本课程旨在为具有有限的地球科学卫星遥感背景的学生提供详尽的介绍,以收集遥感物理原理的基本概念和基础。本课程的主要重点是卫星遥感技术的基本物理和数学原理,包括辐射和几何信息,卫星轨道和地理位置模拟,科学算法设计,大气校正,以及以遥感的遥控感测量。此外,该课程将重点关注NASA,NOAA和USGS当前和未来的卫星仪器。这些学生不仅会了解卫星遥感系统的作用,而且会了解他们的工作方式。本课程旨在通过遥感和应用的物理原理为学生提供全面的最新概述,这不仅用于监测全球和区域氛围,海洋和陆地表面,还用于检测当地目标,例如城市和郊区。气候变化的基于卫星的应用也是另一个重点领域。
i. 总体介绍,包括范围和目标、国际电联对卫星轨道位置和频率的管理以及卫星网络的类型和卫星网络中的干扰。 ii. 机构和行政安排,如政策制定、卫星资源管理和运营机构 iii. 卫星网络备案和提交程序,详细说明计划和非计划频段的步骤 iv. 卫星协调程序以及卫星填充的取消和删除。 v. 该文件还强调了一些针对 EACO 管理部门和该地区的建议,作为如何优化卫星技术潜力以造福成员国和该地区的一大块。由于该文件旨在提供国际电联卫星填充和协调流程、程序和要求的一般背景,因此它完全依赖 ITU-R 资源来提供此处包含的指南。还从非洲电信联盟关于卫星填充和协调的框架中采纳了大量信息。所有 ITU 和 ATU 资源都已被引用,以方便 EACO 管理部门获取有关卫星问题的更多信息。
国际电信联盟(ITU)是联合国负责信息通信技术(ICT)的专门机构,与 193 个成员国和 900 多家公司、大学以及国际和区域组织成员共同推动 ICT 创新。ITU 成立于 1865 年,已有 150 多年的历史,是一个政府间机构,负责协调全球无线电频谱的共享使用、促进卫星轨道分配方面的国际合作、改善发展中国家的通信基础设施以及制定促进各种通信系统无缝互联的全球标准。从宽带网络到尖端无线技术、航空和海上导航、射电天文学、海洋学和卫星地球监测以及融合固定和移动电话、互联网和广播技术,ITU 致力于连通世界。ITU 通过其三个部门履行这一基本使命:无线电通信部门(ITU-R)、电信标准化部门(ITU-T)和电信发展部门(ITU-D)。
在所有全球导航卫星系统 (GNSS) 应用中,确定卫星轨道是一项重要任务。在本研究中,我们介绍了 GPS 接口规范文件中给出的方程以及使用广播星历计算 GPS 卫星位置 P、速度 V 和加速度 A 的龙格-库塔方法。描述 GPS 卫星运动的微分方程的定义使我们能够将龙格-库塔方法引入 GPS 轨道计算中;该方法使用本研究中从广播星历文件中提供的开普勒元素确定的初始条件。使用拉格朗日插值法对结果进行比较,其中使用精确星历估计矢量 P、V 和 A。在本研究中测试的 9 号 GPS 卫星的位置上,在七天内在 X、Y 和 Z 轴上获得的差异不超过 2.4 m。在速度和加速度方面,差异分别约为几 mm/s 和 mm/s 2。
大多数小型卫星操作(包括立方体卫星社区中的操作)都会最大化与地面站的单次通信持续时间,但这样做并不能最大化传输的总数据量。在本文中,我们研究了通过等待以非直观的高仰角开始传输来最大化数据下载的方法。此仰角缩短了倾斜距离,并允许以更高的固定数据速率关闭链路。虽然传输时间较短,但下载的总数据量较大。我们针对各种通道配置检查了这种方法,并将其与世界各地已知地面站的通道分布进行了比较。本研究的结果(分析和数值)与最大化给定卫星轨道传输数据量的策略建议一起呈现。这些方法依赖于在轨时改变无线电数据速率的能力,这通过使用灵活速率无线电来实现。我们通过检查一年内单个地面站的传输数据量来扩展这项研究。结果表明,可以找到最佳固定数据速率,从而使全年下载的数据量最大化。最后,为小型卫星社区提供了无线电开发建议。
在太空环境中,温度波动、冷焊和其他环境因素给设计师带来了新的挑战。立方体卫星在低地球轨道上经历的平均温度范围在日食侧为 -65°C,在太阳侧为 +125°C,因此需要一种能够承受周期性温度波动同时保持其机械性能的材料 [4]。此外,当两个金属表面相互接触时,冷焊是一个值得关注的问题。当两个金属表面之间的间隙变得足够小以至于两个表面的原子共享价电子并相互结合时,就会发生冷焊。这种现象在立方体卫星-分配器界面中令人担忧,两个光滑表面在部署过程中会相互滑动。为了避免这种情况,立方体卫星轨道可以使用聚合物或其他非金属材料。市售尼龙碳纤维 PolyMide PA6-CF 复合材料在上述两种情况下均能发挥理想作用(表 2)。由于在 180°C 下变形最小且无法冷焊,这种 FDM 细丝是模块化 CubeSat 结构的主要候选材料。
卫星的区别是它们在空间环境中发射和运行的能力而没有物理支撑或维修多年来测量的卫星。今天,我们看到了他们的设计和生产革命,从单个单位手工工作转移到大型批次和生产线制造。非对定位的卫星轨道(NGSO)卫星的大小和重量大大减少,因为它们的数量是在数百个和您的砂中测量的,以产生一个有效的星座,能够满足或超过我们只能从一个工作的geostarationary轨道(GEO)卫星中获得的东西。技术进入图片,以设计强调成本和易于测试以及发布的设计。从那里,航天器总线子系统是小型化的,但是它们必须执行发电和存储,态度和轨道控制,热管理和温度控制,遥测和命令的既定功能。有趣的是,许多关键组件,例如星形跟踪器,反应轮和离子推进器,都是由主要承包商而不是从美国和海外的传统专家开发和生产的。但是,这可能会像丰田一样,在这里采购大多数组件而不是在内部制造。因此,良好的“做出购买”决定对于实现成本/有效供应链可能会变得越来越重要。
摘要 轨道碎片由太空中废弃的人造物体组成,对关键的空间基础设施造成严重的运行风险。轨道碎片的存在会导致航天器运行成本增加,因为需要采取额外的努力,例如提高卫星轨道或增加屏蔽或其他方法,以保护重要的太空资产免受即将发生的碎片碰撞。其中一些碎片是由于宇航员在空间站进行维护操作时掉落工具而产生的。根据物体在掉落前所受的力/速度条件,它们可能会被转移到不同的轨道或进入地球大气层。这些物品的丢失可能会造成不利影响,因为它不仅会产生不必要的碎片,还会将关键的维护操作延迟到下一次补给任务的到来。本文旨在探索使用吞噬机制作为空间站机械臂末端执行器的可行性,以便在未来的空间站工作中回收此类丢失物品。重点介绍吞噬末端执行器机制的设计,使用 Bricard 机制作为基础单元。夹持器设计为使用单个旋转致动器来驱动,以完全吞噬碎片。本文还介绍了吞噬夹持器的实现方面,并将其用于地面碎片捕获实验/演示。
摘要 地球观测卫星的卫星任务规划是一个组合优化问题,包括在卫星轨道通过期间选择受约束的最佳成像请求子集以完成该子集。轨道上卫星数量的不断增长凸显了高效运行卫星的必要性,这需要在短时间内解决许多问题实例。然而,当前的经典算法通常无法找到全局最优值或执行时间过长。在这里,我们从量子计算的角度来解决这个问题,这提供了一种有前途的替代方案,可以在未来显著提高解决方案的质量或执行速度。为此,我们研究了一个具有各种复杂约束的规划问题,并讨论了为量子计算机编码它们的方法。此外,我们通过实验评估了量子退火和量子近似优化算法在现实和多样化数据集上的性能。我们的结果确定了影响方法性能的关键方面,例如图连通性和约束结构。我们探索当今量子算法和硬件的极限,为目前可以成功解决的问题提供界限,并展示解决方案如何随着复杂性的增加而退化。这项工作旨在为该领域的进一步研究奠定基础,并对当前的量子优化能力建立现实的期望。
1。在本报告和秩序中,我们修改了委员会规则,该规则管理了新一代宽带卫星星座之间的频谱共享,以通过好信仰协调来促进市场进入,监管确定性和频谱效率。具体来说,我们采用规则,澄清非对位卫星轨道,固定 - 卫星服务(NGSO FSS)系统之间通过使用降级的吞吐量方法授权的固定 - 卫星服务(NGSO FSS)系统,并将这些保护措施降为日落期。在日落期之后,在较晚的加工回合中授权的新进入者将与早期的现任者平等分享频谱。我们还澄清说,在美国的所有NGSO FSS运营商许可或授予的市场访问权限都必须诚实地协调,无论其处理回合状态如何,我们都会解释我们对这种好信仰协调期间信息共享的期望。在随附的进一步通知拟议的规则制定中,我们寻求评论哪些特定指标来定义对以后系统的NGSO FSS系统为较早的NGSO FSS系统提供的保护,并就我们采用的降级吞吐量方法的实施进行具体评论。本报告和命令以及拟议的规则制定的进一步通知将继续委员会为促进NGSO NGSO卫星服务的发展和竞争所做的努力。1