光子晶体腔 (PhCC) 可以将光场限制在极小的体积内,从而实现高效的光物质相互作用,以实现量子和非线性光学、传感和全光信号处理。微制造平台固有的纳米公差可能导致腔谐振波长偏移比腔线宽大两个数量级,从而无法制造名义上相同的设备阵列。我们通过将 PhCC 制造为可释放像素来解决此设备可变性问题,这些像素可以从其原生基板转移到接收器,在接收器中有序的微组装可以克服固有的制造差异。我们在一次会话中演示了 119 个 PhCC 中的 20 个的测量、分箱和传输,产生了空间有序的 PhCC 阵列,21 按共振波长排序。此外,设备的快速原位测量首次实现了 PhCC 对打印过程的动态响应的测量,在几秒到 24 小时的范围内显示出塑性和弹性效应。25
由ONGC管理,这项一兆瓦的飞行员倡议不仅代表了利用可再生能源的重大飞跃,而且还强调了印度致力于解决环境问题和气候变化的承诺。位于超过14,000英尺的惊人高度,地理活跃的Puga山谷既带来了独特的机会,也带来了巨大的挑战。由于当地活动家提出的技术问题和环境问题,该项目面临延误。但是,已经解决了这些问题。基础工作称为Celler Pit,已完成,为1,000米井的钻井铺平了道路。除了发电之外,它有望在苛刻的冬季,支持水产养殖和农业,甚至通过泻湖水疗中心等景点来帮助当地民众供暖。对地热能的这种整体利用与可持续发展目标完全一致,促进经济增长,同时维护环境完整性。
虽然在各个行业已经很常见,但是印刷电子产品的生产设备仍然有改进的空间来优化制造效率。这种优化的一个重要方面,尤其是在使用金属纳米粒子油墨时,是烧结过程。烧结步骤包括将金属纳米颗粒融合在墨水中,以确保所需的成品电路电阻率低。在此任务中,加热烤箱,NIR发射器和宽带闪光灯是建立的技术,但它们的缺点限制了生产速度或效率。
摘要:基于材料 - 排斥的3D打印与多乳酸(PLA)已改变了各种行业的轻量级晶格结构的生产。尽管PLA提供了诸如环保性,可负担性和可打印性等优势,但由于环境因素而导致其机械性能降低。这项研究研究了在室温,湿度和自然光暴露下造成物质降解的PLA晶格结构的影响。在Poisson的比例,poisson的比率和蜂窝的比例上,在泊松比,正对阴性(PTN)梯度方面进行了四种晶格核心类型(辅助性,负阳性(NTP)梯度,以及由于产量压力和失败菌株的下降而导致机械性能的变化。在各种屈服应力和失败应变水平下的机械测试和数值模拟评估了降解效应,并使用未基因的材料作为参考。结果表明,尽管物质减弱,但泊松比的结构对局部粉碎表现出了较高的抵抗力。与减少其屈服应力相比,降低材料的脆性(故障菌株)对影响反应的影响更大。这项研究还揭示了梯度核的潜力,梯度核心在中等降解(60%和80%的参考值下)(屈服强度和失败菌株)在中等降解(屈服强度和失败菌株)下表现出平衡(维持相似的峰值峰值力(保持相似的峰值峰值)和能量吸收(比辅助核高40%))。这些发现表明,使用辅助设计的泊松比的梯度结构对于在可变的环境条件下既需要强度和弹性的AM零件都是有价值的选择。
自然资源学院芬兰卢克,Latokartanonkaari 9,FI-00790,赫尔辛基,芬兰B迪普拉克经济学与管理,赫尔辛基大学,邮政信箱27,FL-00014,赫尔辛基,赫尔辛基,芬兰C自然资源C自然资源finland finland Luke,finland luke,fi-316芬兰D H ame应用科学大学HAMK,Mustialantie 105,FI-31310,Mustiala,Mustiala,Mustiala,芬兰E芬兰环境学院Syke,Latokartanononononkaar 11,FI-00790,赫尔辛基,赫尔辛基,芬兰,芬兰物理学部,Nansoscience Center,Nansoscience Center,Nancience Center,Nancience Center和School Doment, Jyv University of Askyl - A Askyl - A,PO Box 35,Fi-40014,Jyv�Askyl - ,芬兰G Soilfood Ltd,Viikinkaari 6,Fi-00790,赫尔辛基,芬兰H大气与地球研究所(Inar) FI-00014,芬兰赫尔辛基
聚酰胺是3D打印中的材料之一,可以生产有价值的产品以满足行业的需求。先前的研究证明,3D印刷材料的层厚度以及温度的升高会影响机械和物理特性。但是,只有少数研究涉及聚酰胺材料作为测试材料,尤其是在分析印刷材料层厚度的影响以及温度对聚酰胺机械和物理性能的升高时。因此,将在室温下,在不同温度下,75°C和110°C下在0.1 mm,0.2 mm和0.3 mm处具有不同层厚度的聚酰胺的弯曲特性。本研究将使用融合沉积建模(FDM)过程在三个不同的高度上打印的聚酰胺(PA)材料。在不同温度从27°C到110°C的不同温度下进行弯曲和拉伸测试。研究结果表明,0.3 mM的层高度以11.05 MPa的平均速率表现出最高的弯曲强度,而0.1 mm(6.7 MPa)和0.2 mm(9.6 MPa)表现出最高的弯曲强度。与75°C(1.6mpa)和27°C(2.1MPA)的温度相比,温度升高时的拉伸强度会降低,使温度为110°C最低拉伸值(1.591 MPa)。已经进行了几种材料特征,例如SEM,TGA,DMA,DSC和密度,以研究拉伸测试温度对聚酰胺机械性能的微观结构和影响。
1伊朗设拉兹医学科学大学皮肤科医生,伊朗2莎赫里科德大学,伊朗莎赫里科德,伊朗3号萨赫勒科德3阿德比尔大学医学科学大学,伊朗阿德比尔,4 4号医生,马什哈德大学医学科学,马什哈德大学,伊朗Mashhad,Mashhad,Mashhad,Mashhad,伊朗5伊朗的Kermanshah,7腹腔镜外科,妇科医生,德黑兰医学大学,德黑兰,伊朗8博士。阿联酋迪拜生物医学工程中心生物医学工程:10.36347/sjmcr.2024.v12i07.011 |收到:29.05.2024 |接受:03.07.2024 |发布:13.07.2024 *通讯作者:Yasaman Zandi Mehran博士阿联酋迪拜生物医学工程中心的生物医学工程
基于液体金属(LM)的可拉伸印刷电路板的高密度互连(HDI)技术对于扩大其适用性至关重要。HDI技术提供了高分辨率的多层电路,具有高密度的组件,这是下一代神经探针以及超声波和传感器阵列所必需的。这项研究提出了一种使用激光雕刻的微凹槽的HDI技术,并在硅酮中使用保护性升力 - 聚乙烯醇(PVA)和随后的显微镜LM粒子喷雾沉积。这种方法实现了高分辨率的LM模式,并同时实现了组件的多层连接性和高密度集成,即实现HDI技术。使用可伸缩的0201 LED显示器证明,密度为每毫米2的六个铅和一个耳蜗植入物(CI)电极阵列。所证明的CI制造有可能以提高精度和吞吐量的植入物的全自动印刷电路板制造。植入豚鼠中的植入物表明,CI能够使用高质量的电气听觉脑干反应(EABR)和电气复合动作电位(ECAP)激活听觉神经元。此外,LM互连的U形横截面比正常矩形横截面具有更高的电路机械冲击力。
我们的洛克希德马丁航空供应链团队热衷于提供创新、实惠且灵活的解决方案,以超越客户的期望。我们的团队接触我们提供的每一种产品和服务,并帮助我们的客户每天都能做到不可能的事情。随着您的任务不断发展,我们将一路陪伴您。