15. 补充说明 由船舶结构委员会主办,由其成员机构联合资助 16. 摘要 缺乏有关流体动力载荷的信息是高速滑行艇结构设计的一个障碍。该项目的目标是开发和验证一种实用的方法,使用时域模拟来推动高速滑行艇的结构设计。模拟器通过计算二维力并积分结果来求解运动方程,从而预测滑行艇的运动。使用 Smiley (1951) 的模型将截面压力扩展为横向压力分布,然后将其转换为有限元法 (FEA) 载荷图以进行结构分析。将结果与玻璃纤维滑水艇的测量数据以及 Jones 和 Allen (1972) 的数据进行了比较。
在光声断层扫描(PAT)的反问题中,通过一组测得的超声数据估算了光效应诱导的初始压力分布。在最近的十年中,已经提出了对PAT的各种深度学习方法的利用。但是,其中许多处理器都没有提供重建图像的不确定性的信息。在这项工作中,我们提出了一种基于贝叶斯反向问题的基于深度学习的方法,该方法基于变异自动编码器。使用数值模拟评估该方法,并与使用常规贝叶斯图像重建方法获得的后验分布进行了比较。该方法显示出可提供可靠性估计值的快速准确的重建。
本里程碑的目的是尝试通过使用一种称为“magnomic”方法的独立技术来证实基于 NPL 主标准激光干涉仪的水听器校准。该方法利用在 10 MHz 换能器的平面波区域内传播有限振幅声波的理论建模。本文档详细描述了所进行的理论和实验工作的多个方面。介绍了用于预测各种测量位置的声波形的平面波算法。这项工作的一个重要方面是通过波束绘图研究换能器在距换能器表面不同距离处产生的压力分布,这项工作已证明与所需的平面波行为存在显著偏差。还介绍了“magnomic”校准方法其他方面的实验研究结果。
光学测量技术已成为风洞测试的标准选项。压敏涂料 (PSP) 是一种成熟的测试技术,也是许多风洞中测量模型整体平均静压的常见实验技术。当需要更详细的压力分布而不是仅使用传统的压力抽头时,PSP 是一种有价值的工具。即使对于经验丰富的客户来说,使用基于光学的技术进行测试规划也会带来新的挑战。本文旨在为风洞测试社区和有兴趣在美国宇航局艾姆斯研究中心的统一平面风洞上对风洞模型进行 PSP 测量的客户提供资源。指定了 PSP 力学概述、考虑 PSP 测量的要求列表以及 PSP 可交付成果细节。
样品安装 平行样品安装和调整是实现全区域块状硅去除的关键步骤,特别是在使用 Allied Multiprep 或 UltraTech UltraPol 等系统时。尽管在使用 Allied X-Prep 或 UltraTech ASAP-1 等系统进行腔体减薄时,这一步骤并不那么重要,但我们想分享最近在全区域减薄均匀性方面的内部改进。 事实证明,使用压力范围为 0.05 MPa – 0.20 MPa 的富士胶片 Prescale 测量胶片有利于提高样品和抛光垫之间的平行度。该过程包括将压敏胶片放在抛光垫上,然后将样品浸到胶片上。胶片产生的彩色图案指示压力分布,从而可以精确调整样品支架。重复此过程,直到实现均匀分布的彩色图案,确保最佳平行度。图 2 展示了指导调整过程的结果彩色图案。
用来表示平均速度剖面相似性的无量纲参数是 h/zo 比值,即对数速度剖面中建筑物高度与粗糙度长度的比值。但是,还需要强调正确模拟低层建筑模型屋檐高度周围高度的全尺度湍流强度的重要性,因为波动压力系数和峰值压力系数与该参数有很强的依赖性,而平均压力与该参数的依赖性较弱,但很重要。只有当风洞中模拟的边界层正确模拟了低层建筑模型整个高度及以上的大气高湍流内表面层时,湍流强度相似性才会在 h/zo 相等的情况下实现。湍流长度尺度也需要尽可能与模型几何尺度相匹配,尽管在制作足够大的尺寸以适应低层建筑实际施工所需的 1/50 到 1/300 几何尺度方面存在困难。然而,结果表明,只要湍流尺度(通常用于主要涡流尺寸)比建筑尺寸大几倍,就可以放宽这一标准。 i i",.. i 2.4 、流动模式和流体压力分布
图片列表 图 1.1:层流分离泡(Gad-El-Hak 提供)....................................................... 4 图 1.2:层流分离泡压力分布(Gad-El-Hak 提供)....................................... 7 图 1.3:表面油流 – 示例(Lyon 提供)................................................................. 9 图 1.4:表面粗糙度的影响(Gad-El Hak 提供)....................................................... 13 图 1.5:翻折翼型和未翻折翼型的阻力比较(Lyon 提供).................................... 14 图 2.1:改进的 S5010 顶部 MCL(Shkarayev 提供)......................................................... 21 图 2.2:n 阶多项式 MCL 的示例............................................................................. 22 图 2.3:翼型形状参数的描述............................................................................. 23 图 2.4:n 阶 MCL 比较...................................................................................................... 24 图 2.5:带定义多边形和控制点的贝塞尔曲线............................................................... 26 图 2.6:带定义多边形和控制点的贝塞尔 MCL ............................................................ 28 图 2.7:贝塞尔 MCL 比较......................................................................................................... 28 图 2.8:贝塞尔翼型前缘形状细节......................................................................................... 30 图 2.9:贝塞尔翼型后缘形状细节.........................................................................................
用来表示平均速度剖面相似性的无量纲参数是 h/zo 比值,即对数速度剖面中建筑物高度与粗糙度长度之比。然而,正确模拟低层建筑模型屋檐高度周围高度的全尺度湍流强度的重要性也需要强调,因为波动压力系数和峰值压力系数对这个参数有很强的依赖性,而平均压力对这个参数的依赖性较弱,但很重要。只有当风洞中模拟的边界层正确模拟了低层建筑模型整个高度及以上的大气高湍流内表面层时,湍流强度的相似性才会在 h/zo 相等的情况下实现。湍流长度尺度也需要尽可能与模型几何尺度相匹配,尽管在制作足够大尺度以适应低层建筑实际施工所需的 1/50 到 1/300 几何尺度方面存在困难。然而,结果表明,只要湍流尺度(通常用于主要涡流尺寸)比建筑尺寸大几倍,就可以放宽这一标准。ii,”.. i 2.4、流动模式和 M4n 压力分布
用来表示平均速度剖面相似性的无量纲参数是 h/zo 比值,即对数速度剖面中建筑物高度与粗糙度长度之比。然而,正确模拟低层建筑模型屋檐高度周围高度的全尺度湍流强度的重要性也需要强调,因为波动压力系数和峰值压力系数对这个参数有很强的依赖性,而平均压力对这个参数的依赖性较弱,但很重要。只有当风洞中模拟的边界层正确模拟了低层建筑模型整个高度及以上的大气高湍流内表面层时,湍流强度的相似性才会在 h/zo 相等的情况下实现。湍流长度尺度也需要尽可能与模型几何尺度相匹配,尽管在制作足够大尺度以适应低层建筑实际施工所需的 1/50 到 1/300 几何尺度方面存在困难。然而,结果表明,只要湍流尺度(通常用于主要涡流尺寸)比建筑尺寸大几倍,就可以放宽这一标准。ii,”.. i 2.4、流动模式和 M4n 压力分布
本文介绍了关于大脑供血动脉和 Willis 环 (CW) 模型中的流动的实验结果。血管模型是根据解剖标本准备的。考虑了最典型的动脉形状和尺寸。提供了 6 个特征点的压力分布,以及大脑前部、中部和后部的平均流速。在复制生理状态(即供血动脉完全畅通时)和病理条件下进行了测试,其中颈内动脉和椎动脉在一侧或两侧被阻塞。将所得结果与基于线性和非线性流动模型的计算机模拟结果进行了比较。为了估计血管段的非线性阻力,提出了两个现象学公式。从实验中获得的值与非线性计算机模型中记录的值之间的高度相关性证明了所提公式的实用性。验证了以下假设:血管段的流动特性非线性很大程度上是由其曲折和长度相对于直径较小造成的。非线性效应在供血血管病理性闭塞的情况下尤为明显。