对于本文研究的非密封列车,内部压力变化可能非常快,因此可能会影响较高速度下的乘客舒适度。因此,大多数高速列车都具有复杂且昂贵的增压系统,有助于将车厢内的压力变化保持在可接受的水平。它们还必须满足有关密封系统故障时压力变化量的严格规定 [6] 。隧道通行的另一个关键方面是隧道端部发出的强压力振荡(微压波),这可能会扰乱隧道端部附近的环境,尤其是对于位于人口稠密地区小横截面积的隧道。这在日本是一个严重的问题,因此日本的高速列车以其非常长的车头而闻名。
高速磁浮列车通过隧道时,隧道内会产生突变的压力,对乘客的舒适度和设备的使用寿命产生不利影响,同时会向外辐射强烈的微压波,造成隧道出口的环境噪声。本文采用基于剪应力输送k - ω湍流模型的非定常可压缩雷诺平均Navier-Stokes方程,研究在隧道壁上设置吸盘对压力波的抑制效果,并比较不同吸盘速度下的实验结果。结果表明:开启吸盘后,在吸槽附近会产生一个低压区,可以减弱初始压缩波和列车前方的高压区;瞬时列车表面压力、隧道表面压力和微压波与吸盘速度有明显的关系。例如,与无吸力情况相比,在吸力速度为50 m/s的情况下,列车表面测点H1(列车车头处)处第一次和第二次压力突变幅度分别减小10.44%和30.61%;隧道表面测点T17(隧道中部)处的压力突变幅度减小14%以上;测点M2(隧道外,距隧道出口20 m处)处的微压波幅度减小12.44%。这表明采用吸力技术可以减轻隧道气动效应。不同吸力速度下的结果可为吸力执行器的设计提供参考。
示波测量装置通常称为自动装置,除了将袖带放在手臂上并记录数字血压读数外,不需要观察员参与。袖带以电子方式充气和放气。设备中的传感器可感测肱动脉壁产生的压力波。随着袖带压力的释放,压力波幅度增加并在平均动脉内压 (MAP) 处达到峰值,然后再次下降。示波测量装置可检测到最大幅度点 (MAP)。压力波上没有明显的 SBP 和 DBP 点,因此使用算法以电子方式计算收缩压和舒张压。例如,收缩压可能计算为 50% MAP 点和 80% 舒张压点,或者比率可能是 SBP 为 40%,DBP 为 5% (Jilek and Fukushima 2005)。然后将结果显示在数字读数上。市场上有数百种由不同公司生产的设备,这些公司将平均动脉压转换为舒张压和收缩压的算法是专有的。没有关于特定设备使用的特定算法的信息。
携带音乐或语音信息的声音以纵向压力波和密度波的叠加形式在空气中传播。在麦克风(电换能器)中,声音会引起机械振动,然后转换为电信号。当电信号被放大时,声音可以在扬声器(机械换能器)中重现,如示意图所示。
携带音乐或语音信息的声音以纵向压力波和密度波的叠加形式在空气中传播。在麦克风(电换能器)中,声音会引起机械振动,然后转换为电信号。当电信号被放大时,声音可以在扬声器(机械换能器)中重现,如示意图所示。
摘要:本文提出了一种控制佩尔顿轮式涡轮机速度调节器的新算法,该涡轮机用于许多抽水蓄能系统,这些系统在可再生能源参与度较高的孤立电力系统中运行。该算法与使用 PID 或 PI 调节器的标准开发有很大不同,因为除了作用于喷嘴针和导流板外,它还采用了一种新的内环压力稳定电路,以改善频率调节并抑制调节针位置时产生的压力波的影响。所提出的算法已在 Gorona del Viento 风力水力发电厂实施,该发电厂为 El Hierro 岛(西班牙加那利群岛)提供主要能源需求。尽管该工厂除了风力和水力发电系统外,还拥有基于柴油发动机的发电系统,但本文介绍的研究结果的验证重点是频率控制仅由水力发电厂提供的情况。结果表明,采用所提出的算法取代了之前基于经典 PI 调节器的控制系统,能够在不可调度的可再生能源发电发生变化时抑制源自电厂长压力管道的压力波,而案例研究中这种情况发生的频率较高。阻尼器大大减少了累积时间和频率超过不同安全裕度的次数。阻尼器的加入还将低频泵组减载事件的数量减少了 93%。
2.1.6 NFPA 855提供了BESS设计和站点安装规范的最全面指南。 BES的外壳将设计为承受在热失控期间电池系统产生的过压,爆炸保护系统应确保超压不超过3 psi-g。至少,集成的BESS主动通风系统将遵守NFPA 855/NFPA 69指南。 如果BESS设计集成了混合系统,则应通过BESS无燃烧测试,瘦气混合测试以及NFPA和EN标准所需的必要压力测试来验证混合系统或性能设计爆炸保护系统。 此外,BESS围栏将完成完整的UL 9540A测试或大规模的第三方火灾和爆炸测试,而不会出现压力波或弹出弹片。2.1.6 NFPA 855提供了BESS设计和站点安装规范的最全面指南。BES的外壳将设计为承受在热失控期间电池系统产生的过压,爆炸保护系统应确保超压不超过3 psi-g。至少,集成的BESS主动通风系统将遵守NFPA 855/NFPA 69指南。如果BESS设计集成了混合系统,则应通过BESS无燃烧测试,瘦气混合测试以及NFPA和EN标准所需的必要压力测试来验证混合系统或性能设计爆炸保护系统。此外,BESS围栏将完成完整的UL 9540A测试或大规模的第三方火灾和爆炸测试,而不会出现压力波或弹出弹片。
量子信息是一个引人入胜的主题,具有彻底改变我们对宇宙的理解的能力,并且已将其作为一种工具来理解在各种不同环境中的相对论现象,例如加速度和黑洞(称为异常和霍金效应)[1,2]。量子纠缠已被用作增强重力波检测器灵敏度的方法。参考文献[3,4]研究了通过收集相互量子相关性并讨论每个光束在干涉仪中传播的方式的差异来消除过滤腔的可行性。参考[5]提出了一种基于量子纠缠的重力波检测的量子速度计测量方案的新实现。除此之外,一些论文原则上研究了受重力波影响的量子特性,包括量子烙印[6],量子时间扩张[7],纠缠收集[8],激发/对单个原子的兴奋/去敏化[9,10]等。在[11]中还研究了重力场对量子纠缠的影响。,但大多数研究都集中在两体纠缠上。在本文中,我们将研究重力波对量子多体态的影响,并讨论实验检测对压力波的可行性。