Irina Kabakova博士 副教授,光学物理和数学和物理科学学院的副主任,UTS LinkedIn |出版物|联系日期2024年1月24日,星期五12:00至1:00 pm位置S 105标题:用于机械生物学和生物医学摘要的Brillouin显微镜:Brillouin显微镜正在快速开发有关生物物理学,光学,声学,声学和机械生物学相交的新研究领域。 该技术基于非弹性Brillouin光散射的物理现象,在与材料中的GHz压力波相互作用后,光改变了其频率。 光频率的变化,所谓的布里鲁因频移,与正在测试的材料的机械性能相关,因此可以使用微观分辨率,无物理接触和无损害来推断样品中机械性能的分布。 这些特征使布里鲁因显微镜成为研究细胞和组织机械生物学以及原位绘制微力特性的理想技术。 在这次演讲中,我将主要关注布里鲁因显微镜的生物学和生物医学应用,从组织工程到了解癌症和呼吸道疾病等疾病的机械表现。 我还将分享我的实验室在开发纤维综合探针方面的最新进展,这些探针可以将技术扩展到内窥镜应用。 bio:伊琳娜·卡巴科娃(Irina Kabakova)博士是光学物理学的副教授,也是犹他州数学和物理科学学院的学校(教育与学生)副校长。Irina Kabakova博士副教授,光学物理和数学和物理科学学院的副主任,UTS LinkedIn |出版物|联系日期2024年1月24日,星期五12:00至1:00 pm位置S 105标题:用于机械生物学和生物医学摘要的Brillouin显微镜:Brillouin显微镜正在快速开发有关生物物理学,光学,声学,声学和机械生物学相交的新研究领域。 该技术基于非弹性Brillouin光散射的物理现象,在与材料中的GHz压力波相互作用后,光改变了其频率。 光频率的变化,所谓的布里鲁因频移,与正在测试的材料的机械性能相关,因此可以使用微观分辨率,无物理接触和无损害来推断样品中机械性能的分布。 这些特征使布里鲁因显微镜成为研究细胞和组织机械生物学以及原位绘制微力特性的理想技术。 在这次演讲中,我将主要关注布里鲁因显微镜的生物学和生物医学应用,从组织工程到了解癌症和呼吸道疾病等疾病的机械表现。 我还将分享我的实验室在开发纤维综合探针方面的最新进展,这些探针可以将技术扩展到内窥镜应用。 bio:伊琳娜·卡巴科娃(Irina Kabakova)博士是光学物理学的副教授,也是犹他州数学和物理科学学院的学校(教育与学生)副校长。副教授,光学物理和数学和物理科学学院的副主任,UTS LinkedIn |出版物|联系日期2024年1月24日,星期五12:00至1:00 pm位置S 105标题:用于机械生物学和生物医学摘要的Brillouin显微镜:Brillouin显微镜正在快速开发有关生物物理学,光学,声学,声学和机械生物学相交的新研究领域。该技术基于非弹性Brillouin光散射的物理现象,在与材料中的GHz压力波相互作用后,光改变了其频率。光频率的变化,所谓的布里鲁因频移,与正在测试的材料的机械性能相关,因此可以使用微观分辨率,无物理接触和无损害来推断样品中机械性能的分布。这些特征使布里鲁因显微镜成为研究细胞和组织机械生物学以及原位绘制微力特性的理想技术。在这次演讲中,我将主要关注布里鲁因显微镜的生物学和生物医学应用,从组织工程到了解癌症和呼吸道疾病等疾病的机械表现。我还将分享我的实验室在开发纤维综合探针方面的最新进展,这些探针可以将技术扩展到内窥镜应用。bio:伊琳娜·卡巴科娃(Irina Kabakova)博士是光学物理学的副教授,也是犹他州数学和物理科学学院的学校(教育与学生)副校长。她专门研究基于Brillouin光散射的新型显微镜技术,这些技术可以直接应用于微观上的细胞和组织的局部可压缩性和粘弹性。她还对成像设置的光子整合和微型化感兴趣,这将使实验室技术转换为临床使用。作为一名敬业的教育者,伊琳娜(Irina)为UTS物理学学士学位(光学,医疗设备和诊断,医学成像技术)开发了多种教学计划做出了贡献。她是生物医学材料和设备研究所(IBMD@uts)的核心成员。迄今为止,她帮助吸引了总计超过7000万美元的研究资金,这是一项相对较短的科学生涯的重大成就。她是澳大利亚研究委员会量子生物技术卓越中心(QUBIC)和光学微型群岛的首席研究员,用于突破科学(COMBS)。
摘要:用超短激光脉冲对透明材料的受控处理需要详细而精确的了解,从激光能量沉积和材料内部能量转化到流体动力学弛豫和机械响应中的各种激光 - 物质相互作用机制。为了解决这个问题,我们首先基于飞秒泵和探针显微镜偏置镜开发了多时间的实验方法。泵是一个360-FS,1-μJ红外(1030 nm)激光脉冲,分开以提供515 nm的飞秒探头,并延迟可调节从飞秒到纳米秒的延迟。获得的时间分辨的阴影图像允许测量瞬态探针传输。然后,载体密度是通过使用Beer-Lambert Law和Drude模型方法来确定的,证明了大部分熔融二氧化硅内部略有临界等离子体的超快形成。并行,定量双折射图像通过使用光弹性定律来测量压力,从而通过发射GPA压力波的发射光弹性定律揭示了吸收的激光能量,这是激光脉冲后几百个picseconds。然后,使用多尺度型物理模型来解释实验观察结果,计算电子动力学,激光传播和流体动力响应。实验验证后,模拟允许确定局部基本材料特性(应力,密度和温度)的时间演变。我们的方法将来可以用来解释由超短激光脉冲引起的机械驱动的透明材料结构。实验和模拟结果的这种组合使我们能够定量讨论不同激光能量弛豫通道在发现整个相互作用情况的材料中的重要性。我们的模型预测20-GPA的最大初始应力载荷,最高晶格温度达到3.5 10 4K。我们还表明,通过发射弱冲击波,消散了总吸收激光能量的〜2%。
短纤维增强复合材料进气歧管的爆破试验 S. Curioni、T. Lanzellotto、G. Minak、A. Zucchelli、D. A. Caridi DIEM Alma Mater Studiorum – Università di Bologna Viale Risorgimento 2, 40136 Bologna Magneti Marelli Powertrain S.P.A.Via del Timavo 33, 40136 Bologna 电子邮件:tommaso.lanzellotto@unibo.it 摘要 考虑了由短玻璃纤维增强塑料制成的汽油发动机进气歧管,并研究了其在爆破试验过程中的机械行为。这项研究的目的是研究由于制造工艺而导致的材料各向异性和振动焊接参数过程对整体部件阻力的影响。关键词:短纤维复合材料,爆破试验,失效分析 引言 汽车行业对低密度材料的需求很高,因为发动机小型化、节能和降低成本的政策。复合材料具有这种特性,同时确保良好的机械强度和足够的耐久性;此外,它们还能显著降低噪音和吸收振动。这些材料取代了许多部件中的金属(特别是铝),例如进气歧管、空气滤清器外壳、正时齿轮和散热器风扇。特别是在进气应用中,通过更光滑的进气歧管内表面来提高性能。事实上,很容易获得低粗糙度值(通过模具抛光从 Ra 5 到 Ra 1.6 再到 0.4)(图 1a-b)。所研究的部件是汽车发动机中使用的进气歧管 (AIM)。其主要作用是将空气输送到发动机气缸中,以实现最佳燃烧。具体来说,AIM 功能包括更换每个气缸中的工作流体、用过滤空气填充以及减少在重新填充和排放阶段由压力波引起的噪音。组件设计的关键问题是重量轻、机械强度足够、耐用性和尽可能减小的整体尺寸 [1]。AIM 制造的传统解决方案基于铝合金铸造;然而,
压力系统变频驱动器 E.sybox 和 E.sybox Mini 3 。......................。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 E.sydock、E.sytwin、E.sywall 和 E.sylink 套件。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...... div>.........7 家用泵和压力系统铸铁自吸喷射泵 .. < /div>.....。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...... div>8 不锈钢自吸喷射泵 ......< div> 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 Euroinox 不锈钢自吸卧式多级泵。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 电子家用压力系统 外围涡轮电子压力系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 自吸高科技聚合体喷射电子压力系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 Euroinox 不锈钢自吸卧式多级电子压力系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 铸铁自吸式电子压力系统 ...... div>............。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . . . . . div> . . . . . . . . . . . . . . 18 不锈钢自吸式电子压力系统 . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...... div>............. . 18 不锈钢自吸式电子压力系统 . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。..18 不锈钢自吸式电子压力系统 ...。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 潜水式家用电子压力系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 表面安装泵自吸喷射/矛点。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 自吸卧式多级。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 浅井重型自吸喷射/矛点泵铸铁双级喷射泵。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 铸铁单级喷射泵。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 浅井选择表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 深井/钻孔重型铸铁农场和灌溉压力系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...... div>......27 深井铸铁压力系统 .......。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。27 个注射器套件。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。27 深井选择图表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 重型离心灌溉和输水泵小流量 K 系列。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 中流量 K 系列。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 双级 K 系列。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 钻孔 iSolar 供电泵 4” 钻孔 iSolar 供电泵。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 4” 钻孔 iSolar 供电泵性能曲线。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32 4” 钻孔 iSolar 选择矩阵。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35 4" 钻孔电机 - 充水 4GG 技术数据。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 一般数据。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 4 英寸钻孔马达 - 充油 4OL 技术数据 ....。。。。。。。。 < /div>...........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39 一般数据。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39 DAB S4 系列 4" 钻孔电机 - 变频驱动器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。40 4" 钻孔泵 - 变频驱动器 - 曲线。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。41 4" 钻孔潜水泵 4" 钻孔潜水泵。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.....47 4” 深井潜水泵性能曲线 ................。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。48 4” 深井潜水泵选型表 .....................。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51 多级泵 Tesla Diver 泵。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。52 个用于供暖和空调系统应用的循环器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 构造特征。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.53 潜水排水泵解决方案排水泵 .....................。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。54 涡流泵。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55 FEKA。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55 FEKA BVP。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55 30升台下式自动收集站NOVABOX。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。56 加压水储水箱 PressureWave 水箱。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。57 个高压压力波 16 和 24 Bar 罐。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。57 个挑战者压力罐。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。58 个 C2B 玻璃纤维罐。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。58 有用信息 您每分钟需要多少升?。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。59 管道摩擦图表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。60
,包括横向流体打击(LFP)诱发的脑损伤(LFP),侧向控制皮层撞击损伤(CCI)及其气动变体(Lighthall,1988)和电磁变体(Brody et al。,2007; Onyszchuk et an e an feen and frow)andi and and froge and and and and and and and and from and from.,and and and from an。 1981年),等等。FPI模型是最成熟且常用的最常用的,尽管它可以改进,以更好地理解人类中TBI的后果。不能排除任何其他模型的开发,特别是如果这样的模型改善了控制产生TBI的主要参数的效率,例如,峰值压力及其持续时间有助于控制损伤严重性,而不是提及无需进行强化训练的无需进行的实现的可行性,以及其他改进。完全控制脑损伤的严重性将是理想TBI模型的最佳功能,因此,任何改善现有模型功能的其他方法都将有助于更好地了解基本机制以及设计最佳的治疗策略。尽管LFP模型是最广泛使用和良好的特征性的,该模型被非渗透和非渗透性TBI(Katz and Molina,2018年),但在该模型中,有些问题尚未解决,包括活塞的固有特征,包括需要经常润滑的材料,因为它的材料构成了,因为易于构建的材料是造成的。 解决方案。在这方面,Kabadi等人。 同时,Ouyang等人。在这方面,Kabadi等人。同时,Ouyang等人。此外,通常使用的空气透明管会吸收一些压力,并且释放质量击中活塞的机制需要每个用户的技能。(2010年)旨在通过引入一个使用双动力活塞气动系统的空气驱动撞击器来增强原始方法,从而精确地控制输送到栓子的冲击力,从而达到所需的损伤强度水平。虽然对撞击器的释放进行了电子调节,但基本原理仍然类似于以流体大球的形式诱导压力波。(2018)对原始设计进行了修改,以应对与摆模型相关的挑战,并旨在消除手动操纵该设备的必要性。这些作者用不锈钢圆柱体代替了有机玻璃管,并结合了使用电磁控制的量角器来精确地对齐摆,然后撞击了栓塞,达到了所需的压力来诱导脑损伤。另一方面,受控皮质冲击(CCI)模型通过利用电磁活塞直接影响硬脑膜,提供了一种替代方法来诱导不同程度的损害(Brody等,2007; Osier and Dixon,2016)。该模型允许对参数(例如速度,加速度,角度和撞击器渗透)等参数进行电子控制。因此,它产生了更具局部损害的形式,从而导致不同的形态和行为结果可能与LFP模型产生的损害相差。因此,我们的研究主要旨在将这种创新TBI设备的优势与其他流体打击乐器进行比较。此外,格拉斯哥昏迷量表已将TBI分类为严重,中度和轻度,以及计算机断层扫描的结果是正常和负异常(Capizzi等,2019)。众所周知,在TBI模型(出血,脑膜损伤,坏死等)初次损害之后,不同的生化和分子改变
2023 年 2 月 11 日星期六 总统研讨会 上午 8:00 - 下午 12:00 海洋宴会厅 5-12 总统研讨会: 主席:哥伦比亚大学 Elizabeth Olson 本次研讨会旨在传达耳朵的基本奇妙之处,以及耳朵和大脑如何共同提供我们的听觉。了解健康耳朵和听觉大脑的运作是理解声音感知如何失效的关键。会议以物理学家 Christopher Shera 关于耳蜗敏感性思想的历史发展的演讲开始。耳蜗动态处理专家 Karl Grosh 将回顾耳蜗力学。Laurel Carney 将讨论耳蜗动力学如何影响神经对声音(包括语音)的反应。Raymond Goldsworthy 将讨论人工耳蜗的历史如何促成现代设备的出现。患有听力损失的作曲家 Richard Einhorn 将讨论他与听力损失的经历,并分享他对现代助听器和个人声音放大系统的了解。最后,黛巴拉·图西将介绍听力损失对全球的影响以及为改善可及性所做的努力。听力是交流的基础。听力损失的影响以及听力修复的影响是深远的。这次研讨会是对这段历史的一次快速回顾 — — 从历史到基础,再到可以、应该和可以做些什么来解决听力健康问题。耳朵、眼睛和 ARO:不同时代的耳蜗功能 Christopher Shera,南加州大学 内耳的耳蜗将空气传播的压力波转换成神经冲动,大脑将其解释为声音和语音。耳蜗是一种蜗牛形状的电液机械信号放大器、频率分析仪和换能器,具有令人惊叹的性能特性,包括对亚原子位移的灵敏度和微秒级的机械响应时间;跨越三个数量级频率的宽带操作;以及 120 dB 的输入动态范围,对应信号能量的百万倍变化。所有这些并非采用最新的硅技术,而是依靠自我维持的生物组织实现的,而生物组织大部分是咸水。耳朵是如何做到的?本演讲将回顾我们认为了解的一些耳蜗工作原理,以及这些想法和 ARO 是如何随着时间而变化的。耳蜗力学综述 Karl Grosh,密歇根大学 哺乳动物的耳蜗对传入的声学信号进行实时时频分析,并将该信息传输到大脑进行处理。正常听力依赖于该器官的机械、电和声学(流体)域精心协调的三部分响应。哺乳动物耳蜗的外毛细胞 (OHC) 是主动过程的纽带,这些过程产生了非线性、生物学上脆弱的耳蜗响应允许声音的感觉和系统在百万倍的激励水平变化下存活。然而,实现这一结果的生物机电反馈控制算法仍未完全理解。在本次演讲中,我们将回顾耳蜗的基本结构功能关系以及将这些基本构建块(例如 OHC 电动性和 OHC 毛束机电转换)转化为生理驱动的完整数学模型的过程。我们将介绍建模的基本挑战,包括三维线性和非线性模型的有效时域模拟。我们讨论并举例说明(通过数值实验)可以改变和研究生物物理相关的模型元素的方式,以解决耳蜗生物物理学的核心问题,例如躯体运动在耳蜗放大中的作用、声发射中的可能流体路径以及耳蜗中的基本非线性。这些实验的最终目标是确定