摘要 - 在这项研究中,提出了独立铜(CU)透明玻璃染色(TGV)的微压。开发了一种创新方法,以获得独立的cu tgvs,其中cu覆盖量被用作微压测试的底板,从而可以直接获得单个TGV的机械响应。根据机械响应,Cu TGV的平均屈服强度为123 MPa,标准偏差为7.85MPa。六个测试的TGV的屈服强度值非常吻合,表明一种可靠且可重复的测试程序。该值略低于Cu TSV的屈服应力值,但在报告的电镀铜的范围内。讨论了影响Cu TGV的机械性能的因子,包括电镀参数和微观结构变化。在本研究中证明的样品制备和微压测试方法可以轻松地用于经受各种制造和退火条件的TGV,这将使处理参数的细节调节以生成具有可取属性的CU TGV的特定属性。该测试的结果还将为预测热模型提供有价值的输入,以使可靠的玻璃插入器的发展。
摘要:本文旨在研究补偿硅压力传感器的迟滞误差,以提高传感器精度。研究对象是基于MEMS技术的工业领域中的大量程扩散硅压阻式压力传感器。由于传感器的迟滞特性复杂,补偿困难,目前尚未见相关研究的先例。作者分析了迟滞特性的成因和影响因素,并通过实验证明了硅压力传感器满足广义Preisach模型的必要和充分条件。利用传感器的Preisach模型,采用逆广义Preisach模型的补偿算法对迟滞误差进行补偿,实验表明,补偿后迟滞误差明显减小,从而提高了传感器的精度。
1 米尼奥大学物理中心,4710-057,布拉加,葡萄牙 2 米尼奥大学 IB-S 可持续发展科学与创新研究所,4710-057,布拉加,葡萄牙 3 米尼奥大学聚合物与复合材料研究所 IPC/I3N,4800-058 吉马良斯,葡萄牙 4 BCMaterials,巴斯克材料、应用与纳米结构中心,HU 科技园,48940 Leioa,西班牙 5 IKERBASQUE,巴斯克科学基金会,48013,毕尔巴鄂,西班牙
* Keith B. Hall 是路易斯安那州矿产法研究所所长,也是路易斯安那州立大学的法学教授。他担任新奥尔良律师协会石油和天然气部门主席、路易斯安那州律师协会环境法部门即将上任的主席以及落基山矿产法基金会董事会成员。此外,他还与人合著了《路易斯安那州律师杂志》双月刊上的《最新发展:矿产法》。在加入路易斯安那州立大学之前,他是新奥尔良 Stone, Pigman, Walther, Wittmann LLC 的成员,在那里执业 16 年,专注于石油和天然气法、环境法和有毒侵权诉讼。他还担任该公司能源和环境实践小组的联席主席,并撰写了其律师事务所博客《石油和天然气法简报》。在从事法律工作期间,他还担任新奥尔良洛约拉大学法学院的兼职教授,讲授《矿产法概论》课程。
SDP800 传感器系列是 Sensirion 专为大批量应用而设计的数字差压传感器系列。这些传感器可测量空气和非腐蚀性气体的压力,精度极高,无偏移漂移。这些传感器的压力范围高达 ±500 Pa(±2 英寸 H 2 O / ±5 毫巴),即使在测量范围的底端也能提供出色的精度。SDP800 系列具有数字 2 线 I 2 C 接口,可轻松直接连接到微处理器。这些传感器的出色性能基于 Sensirion 的专利 CMOSens® 传感器技术,该技术将传感器元件、信号处理和数字校准结合在一块小型 CMOS 芯片上。差压由热传感器元件使用流通技术测量。久经考验的 CMOS 技术非常适合高质量的大规模生产,是要求严格且成本敏感的 OEM 应用的理想选择。Sensirion CMOSens ® 技术的优势
› 测量更快速:给定计量流量,传感器可立即检测到压差 › 模块化兼容性 › 无需流量稳定部分 › 污染敏感性更低 › 无需复杂的旁路结构 › 免维护结构 › 紧凑设计
这项研究的目的是通过作者设计的基于开源软件的便携式、低成本、完全可配置、灵活的呼吸计,在封闭系统中实验性地确定经过最低限度处理的琉璃苣茎的呼吸活动。该设备是模块化的,因此传感器位于产品呼吸室外,通过闭合电路连接,可以连续测量 O2 和 CO2 浓度以及压差。通过这些测量,确定了琉璃苣茎在 4 ºC 空气中(20 mL CO 2 kg -1 h -1 和 22 mL O 2 kg -1 h -1 )的呼吸速率及其随 O 2 浓度变化的情况。结果表明,将容器中的O2浓度降低到14%以下,足以使琉璃苣茎在空气中的代谢活性减缓至初始值的35-38%。呼吸系数和压差之间的一致性提供了将该测量值用作代谢变化指标的可能性。
工作条件 *最高工作温度 *褶式玻璃纤维 121 ℃ *褶式 PP 82 ℃ *最大压差 *褶式玻璃纤维 120 ℃时为 2.4 bar (g) *褶式 PP 80 ℃时为 2.4 bar (g) *建议最大水流量
摘要 — 运算跨导放大器 (OTA) 是许多电子电路(如模拟滤波器和数据转换器)的重要组成部分。由于功耗低,低于 1V 的模拟电路在物联网 (IoT) 应用中越来越受欢迎。此外,人们还在探索基于数字的 OTA,以实现高能效。本文涉及一种基于反相器的 OTA 的实现,该 OTA 采用自偏置技术,通过实现差分差分放大器在共模频带中工作,以减轻在弱反相下工作的不必要变化。OTA 采用 180 nm CMOS 技术设计,由 0.9 V 电源供电。在 GBW 接近 36.66 MHz 的情况下实现了 52.22 dB 的直流增益。对于 10 pF 的负载电容,功耗为 203.71 µW。索引术语 — OTA 反相器、差分放大器、自极化、低压。