概述 压敏电阻提供可靠且经济的保护,防止高压瞬变和浪涌,这些瞬变和浪涌可能由交流或直流电源线上的雷电、开关或电气噪声等产生。与瞬变抑制二极管相比,它们的优势在于它们可以吸收更高的瞬变能量,并可以抑制正向和负向瞬变。当发生瞬变时,压敏电阻电阻会从非常高的待机值变为非常低的导电值。因此,瞬变被吸收并钳位到安全水平,保护敏感的电路元件。压敏电阻由非均质材料制成,在两个粒子的接触点处产生整流作用。许多串联和并联连接决定了压敏电阻的额定电压和电流能力。
X-ON Electronics 最大的电气和电子元件供应商 点击查看压敏电阻类别的类似产品: 点击查看晶岛制造商的产品: 其他 类似产品如下:
注意:CDM7162 是 ESD 敏感产品。本产品不使用任何 ESD 保护元件,例如齐纳二极管或压敏电阻。建议在应用产品组装过程中使用 ESD 保护设备来处理模块。还建议在将本产品嵌入成品时,根据预期应用的要求使用 ESD 保护元件和/或 ESD 保护外壳。
前言 本选集第 2 部分收录的论文报告了有关低压交流电浪涌标准的制定情况,根据浪涌保护装置的现场性能进行了“现实检验”,这些检验在某些情况下对这些标准中规定的要求的有效性提出了质疑,而在其他情况下则证实了这些标准的有效性。1985 年之前的论文版权归各自的出版商所有,他们慷慨地允许转载。1985 年之后的论文是在美国国家标准与技术研究所的赞助下发表的,因此属于公共领域。第 2 部分附件 A 的引文是为开发 IEEE SPD 三部曲(C62.41.1 TM –2002;C62.41.2 TM –2002;和 C62.45 TM -2002)的工作组收集的,但并非详尽无遗的列表。虽然得到承认和赞赏,但由于明显的版权限制,其他研究人员的这 12 篇论文不能在此转载。目录 瞬态控制水平:低压系统绝缘协调提案 (1976) 瞬态控制水平理念和实施 - 第 1 部分:理念背后的推理 (1977) 额定电压高达 600 V 的交流电源电路浪涌电压指南 (1979) 低压交流电源浪涌电压指南的制定 (1979) 压敏电阻与环境:赢得复赛 (1986) 浪涌测试的真实、逼真的环波 (1991) 100/1300 浪涌测试与压敏电阻故障率之间的不兼容性 (1991) 根据 VDE 0160 标准测试压敏电阻 (1991) 标准:跨国方面 (1991) 通过现场经验验证浪涌测试标准:高能测试和压敏电阻性能 (1992) 对浪涌环境标准进行现实检验 (1996) 使用白炽灯故障水平用于评估浪涌环境 (1997) 将高浪涌电流引入长电缆:多则少 (1997) 制定面向消费者的浪涌保护指南 (1997) 中性点接地做法对低压装置中雷电流分散的影响 (1998) 浪涌保护与过压场景的困境:对低压 SPD 的影响 (1998) 监测浪涌电压的谬误:SPD 和 PC 比比皆是!(1999) 建筑物直接闪击后雷电流的分散 (2000) 电能质量参数测量的新 IEC 标准 (2000) IEEE C62.41 的三部曲更新 (2000) 浪涌保护装置在共享雷电流中的作用和压力 (2002) 新 IEEE 标准促进下一代系统兼容性 (2002)
背板 保护接地 光耦合器 : 压敏电阻 : 电阻器 : 保险丝 : 二极管 : 电容器 使用时,请仔细阅读产品附带的使用说明书并正确使用。 未经许可,不得分发或复制本目录的全部或部分内容。 请注意,由于产品的改进和修改,本目录中的产品描述可能在某些方面与实际产品不同。 DIASYS Netmation/DIASYS Netmation4S 是三菱重工业株式会社的注册商标。 本目录中描述的其他公司的服务名称和产品名称是各公司的商标或注册商标。
GE 的串联补偿解决方案与高压 (HV) 输电线串联安装,由集成的定制设计系统组成,包括许多串联和并联的电力电容器。最关键的设备是并联保护系统,可防止电力系统故障期间电容器受损。保护系统设计需要仔细选择和协调多个组件,包括快速旁路开关、金属氧化物压敏电阻 (MOV)、触发气隙 (TAG)(如果使用)和数字保护系统。GE 优化了保护系统设计,以经济高效地满足客户和系统要求。是否使用 TAG 的决定通常取决于串联电容器组位置的可用故障能量。