未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(该版本发布于2024年7月11日。; https://doi.org/10.1101/2024.07.07.08.602502 doi:Biorxiv Preprint
2。安全和代码合规性,以确保安全且NEC符合NEC的操作,正确额定的断开手段,过电流保护设备(OCPDS)和适合HV电池组的组合器。根据国家电气代码(2023 ED)第706.15(a)条的ESS系统必须具有断开连接的手段:“应提供均值与所有接线系统(包括其他电源系统,利用设备及其相关的场所)断开ESS的均值。”本节还描述了上述断开连接的允许位置:•“(1)位于ESS内的(1)位于视线内,距离ESS内的3 m(10 ft)之内,在ESS•(3)的情况下,不在ESS的视线,断开的含义,均值或封闭的封闭方式,或者在隔离的范围内,均应符合110.25的范围。由于包含了积分,双极,可锁定连接,贝斯将符合此要求(图2)在电池管理单元(BMU)内。此设备断开电池系统的正电池输出导体和负电池输出导体。
1工程技术学院,国家纺织大学卡拉奇校园,卡拉奇74900,巴基斯坦,纺织和服装系; muhammadfahad@ntu.edu.pk 2纺织和完成纺织品的工程研究中心,教育部,中国杭州科幻大学教育部,中国310018; jshao@zstu.edu.cn 3高级纺织品材料与制造技术的主要实验室,教育部,吉亚格科幻大学,杭州科技大学,中国310018; nazakat.ali@buitms.edu.pk 4材料与纺织学院,吉亚格科幻大学,杭州大学,杭州310018,中国5号,巴布洛基斯坦信息技术,工程与管理科学大学(Buitems)纺织工程系(Buitems),Quetta 54000,Pakistan 6 42000,巴基斯坦; imran.ahmad@umt.edu.pk(i.a.k. ); kashif.javed@umt.edu.pk(K.J.) 7 Daffodil国际大学纺织工程系,达卡1216,孟加拉国8纺织工程系,梅赫兰工程与技术大学(MUET),Jamshoro 76062,巴基斯坦; sanam.irum@faculty.muet.edu.pk 9美国马萨诸塞州马萨诸塞州达特茅斯大学生物工程系,美国马萨诸塞州北达特茅斯,美国02747; qfan@umassd.edu *通信:arsalan_ahmed@ntu.edu.pk(a.a.); asfandyarkhan100@gmail.com(又称)1工程技术学院,国家纺织大学卡拉奇校园,卡拉奇74900,巴基斯坦,纺织和服装系; muhammadfahad@ntu.edu.pk 2纺织和完成纺织品的工程研究中心,教育部,中国杭州科幻大学教育部,中国310018; jshao@zstu.edu.cn 3高级纺织品材料与制造技术的主要实验室,教育部,吉亚格科幻大学,杭州科技大学,中国310018; nazakat.ali@buitms.edu.pk 4材料与纺织学院,吉亚格科幻大学,杭州大学,杭州310018,中国5号,巴布洛基斯坦信息技术,工程与管理科学大学(Buitems)纺织工程系(Buitems),Quetta 54000,Pakistan 6 42000,巴基斯坦; imran.ahmad@umt.edu.pk(i.a.k.); kashif.javed@umt.edu.pk(K.J.)7 Daffodil国际大学纺织工程系,达卡1216,孟加拉国8纺织工程系,梅赫兰工程与技术大学(MUET),Jamshoro 76062,巴基斯坦; sanam.irum@faculty.muet.edu.pk 9美国马萨诸塞州马萨诸塞州达特茅斯大学生物工程系,美国马萨诸塞州北达特茅斯,美国02747; qfan@umassd.edu *通信:arsalan_ahmed@ntu.edu.pk(a.a.); asfandyarkhan100@gmail.com(又称)7 Daffodil国际大学纺织工程系,达卡1216,孟加拉国8纺织工程系,梅赫兰工程与技术大学(MUET),Jamshoro 76062,巴基斯坦; sanam.irum@faculty.muet.edu.pk 9美国马萨诸塞州马萨诸塞州达特茅斯大学生物工程系,美国马萨诸塞州北达特茅斯,美国02747; qfan@umassd.edu *通信:arsalan_ahmed@ntu.edu.pk(a.a.); asfandyarkhan100@gmail.com(又称)
纸张出版日期:2024年6月15日摘要 - 机械能是一种多功能且易于使用的绿色能源,越来越多地通过创新的柔性压电纳米生成器(F-PNG)来供电小型设备。这些设备使用轻巧的材料(例如钛酸钡(BATIO3),聚二甲基硅氧烷(PDMS)和多壁碳纳米管(MWCNTS)将机械能转换为电力。在此设计中,将BATIO3纳米颗粒嵌入了带有PDM和MWCNT的复合膜中,并夹在两个铜电极之间。为这项研究合成的Batio3/PDMS/MWCNT复合PENGS通过周期性的循环打击产生约8V的输出电压。这与没有MWCNT掺杂的PENG相比,这一增加约为16%。此外,在最佳MWCNT wt。%处的短路电流在约5.22 µA处峰值。可以通过0.1μF的储能电容器有效捕获产生的电能,然后将其用于为两个商用红色LED供电。这些发现表明,BATIO3/PDMS/MWCNT复合材料作为无铅压电纳米生成剂具有重要的希望。索引术语 - 柔性压电纳米生成器,机械能,能量收集,钛酸钡(BATIO3),聚二甲基硅氧烷(PDMS),多壁碳纳米管(MWCNTS)。
Michael A. Helmrath,医学博士Leyla Esfandiari,辛辛那提辛辛那提儿童医院医学中心辛辛那提大学干细胞和类器官医学系生物医学工程系3333 Burnet Avenue,MLC 2023 2023 2851 2851 michael.helmrath@cchmc.org leyla.esfandiari@uc.edu 513.636.4200 513.556.1355
1。引言电力是现代生活的基石,对于工业运营和日常活动至关重要。它为房屋,企业和基础设施提供动力,这使得没有它的世界几乎是不可思议的。然而,全球人口不断增长和传统能源的耗竭造成了巨大的能源困境。从历史上看,化石燃料一直是能源的主要来源。尽管它们曾经充足的可用性和上能量产量,但化石燃料还是有限的,其解开的使用构成了严重的环境和经济挑战。随着化石燃料储备的减少,对可持续和可再生能源的需求变得越来越紧迫。这种紧迫的需求激发了能源收集领域的兴趣和创新,尤其是通过诸如压电等技术。压电性是一个奇迹,在其中无法重新推销的材料会产生电力学费,以响应不浪漫的机械应力。可以利用这种效果从机械运动中产生电能,例如车辆在道路上施加的压力。压电材料产生的电压随时间变化,导致连续的电流(AC)信号。此信号是未驱动和反重率效应的表现。当机械应力产生电荷时,不配意的压电效应就会发生,而当电场诱导材料中的机械应变时,反向效应就会发生。压电技术比其他能源收集方法具有多个优点
摘要:超声波无线能量传输技术(UWPT)是植入式医疗设备(IMD)供电的关键技术。近年来,氮化铝(AlN)由于其生物相容性和与互补金属氧化物半导体(CMOS)技术的兼容性而备受关注。同时,钪掺杂氮化铝(Al 90.4%Sc 9.6%N)的集成是解决AlN材料在接收和传输能力方面的灵敏度限制的有效解决方案。本研究重点开发基于AlScN压电微机电换能器(PMUT)的微型化UWPT接收器装置。所提出的接收器具有2.8×2.8 mm 2的PMUT阵列,由13×13个方形元件组成。采用声学匹配凝胶,解决液体环境下声阻抗不匹配问题。在去离子水中的实验评估表明,电能传输效率(PTE)高达2.33%。后端信号处理电路包括倍压整流、储能、稳压转换部分,可有效将产生的交流信号转换为稳定的3.3V直流电压输出,成功点亮商用LED。这项研究扩展了无线充电应用的范围,为未来实现将所有系统组件集成到单个芯片中,进一步实现设备小型化铺平了道路。
自身免疫性疾病是由各种因素引起的病理自身免疫反应,这可能导致组织损伤和器官功能障碍。它们可以分为器官特异性和系统性自身免疫性疾病。这些疾病通常涉及各种身体系统,包括血液,肌肉,骨骼,关节和软组织。瞬态回收潜力(TRP)和压电受体,导致David Julius和Ardem Patapoutian在2021年赢得了诺贝尔的生理学或医学奖,引起了人们的注意。关于自身免疫性疾病中TRP和压电受体的大多数研究已经在动物模型上进行,只进行了很少的临床研究。因此,本研究旨在审查有关TRP和压电的现有研究,以了解这些受体在自身免疫性疾病中的作用,这可能有助于阐明新型治疗策略。
尽管已采取合理的努力来获得第三方的所有必要权限,以在本文中包括其受版权保护的内容,但在此公认的手稿版本中可能不存在它们的全部引用和版权行。在使用本文中的任何内容之前,请参阅IOPSCIERCE上的记录版本,一旦发布以获取完整的引用和版权详细信息,因为可能需要权限。所有第三方内容均受到完全保护的保护,并且未按照CC按照许可在金色的开放访问基础上发布,除非该记录版本中的图标题中明确说明了这一点。