荷兰大学核医学与分子成像系,格罗宁根大学计算机科学和人工智能研究所荷兰E Philips Research,Healthcare,荷兰荷兰人,神经科学系,意大利热那亚大学Gircs Ospedale Policlinico San Mantino,Henoa,意大利Health Sciences,Health Sciencence o o servicio deNeurolología,Complejo de Navarario Deem deNeurología,spein nNeurología西班牙西班牙K神经病学系的Nacional de Medicina deEspaña,西班牙西班牙L Neuroscience计划,应用医学研究中心,西班牙Pamplona,MANADARARA医疗研究所,Pamplona,Pamplona,Pamplona,西班牙Pamplona,西班牙萨克森N萨克森大学N萨克森学院,萨克森学院。 代谢与系统研究,医学与牙科科学学院,伯明翰,英国荷兰大学核医学与分子成像系,格罗宁根大学计算机科学和人工智能研究所荷兰E Philips Research,Healthcare,荷兰荷兰人,神经科学系,意大利热那亚大学Gircs Ospedale Policlinico San Mantino,Henoa,意大利Health Sciences,Health Sciencence o o servicio deNeurolología,Complejo de Navarario Deem deNeurología,spein nNeurología西班牙西班牙K神经病学系的Nacional de Medicina deEspaña,西班牙西班牙L Neuroscience计划,应用医学研究中心,西班牙Pamplona,MANADARARA医疗研究所,Pamplona,Pamplona,Pamplona,西班牙Pamplona,西班牙萨克森N萨克森大学N萨克森学院,萨克森学院。 代谢与系统研究,医学与牙科科学学院,伯明翰,英国荷兰大学核医学与分子成像系,格罗宁根大学计算机科学和人工智能研究所荷兰E Philips Research,Healthcare,荷兰荷兰人,神经科学系,意大利热那亚大学Gircs Ospedale Policlinico San Mantino,Henoa,意大利Health Sciences,Health Sciencence o o servicio deNeurolología,Complejo de Navarario Deem deNeurología,spein nNeurología西班牙西班牙K神经病学系的Nacional de Medicina deEspaña,西班牙西班牙L Neuroscience计划,应用医学研究中心,西班牙Pamplona,MANADARARA医疗研究所,Pamplona,Pamplona,Pamplona,西班牙Pamplona,西班牙萨克森N萨克森大学N萨克森学院,萨克森学院。代谢与系统研究,医学与牙科科学学院,伯明翰,英国
摘要 同步加速器 X 射线成像已用于检测金属增材制造 (AM) 过程中熔池的动态行为,此过程中会产生大量图像数据。在此,我们开发了一种高效且稳健的深度学习模型 AM-SegNet,用于分割和量化高分辨率 X 射线图像,并准备了一个包含超过 10,000 个像素标记图像的大型数据库,用于模型训练和测试。AM-SegNet 结合了一个轻量级卷积块和一个定制的注意机制,能够以高精度(∼ 96%)和处理速度(每帧 < 4 毫秒)执行语义分割。分割结果可用于关键特征(例如锁孔和孔隙)的量化和多模态相关分析。此外,还展示了 AM-SegNet 在其他先进制造工艺中的应用。所提出的方法将使制造和成像领域的最终用户能够加速从收集到分析的数据处理过程,并提供对过程控制物理学的洞察。
嵌合抗原受体 (CAR) 单核细胞和巨噬细胞疗法是有前途的实体瘤免疫疗法,可以克服传统 CAR T 细胞疗法面临的挑战。mRNA 脂质纳米颗粒 (mRNA-LNPs) 为原位改造具有瞬时和可调 CAR 表达的 CAR 单核细胞提供了可行的平台,以降低肿瘤外毒性并简化细胞制造。然而,使用传统的筛选技术很难识别具有单核细胞趋向性和细胞内递送能力的 LNPs。在这里,可电离脂质设计和高通量体内筛选被用于识别具有先天趋向性和向单核细胞递送 mRNA 的新型氧化 LNPs。合成氧化 (oLNPs) 和未氧化 LNPs (uLNPs) 库以评估向免疫细胞递送 mRNA。 oLNP 在形态、电离能和 p K a 方面表现出显著差异,从而增强了向人类巨噬细胞而非 T 细胞的递送。随后,使用 DNA 条形码进行体内文库筛选,确定了一种具有先天向性单核细胞的 oLNP 配方 C14-O2。在一项概念验证研究中,C14-O2 LNP 用于原位设计功能性 CD19-CAR 单核细胞,以治疗健康小鼠的严重 B 细胞发育不全 (45%)。这项工作突出了氧化 LNP 作为设计 CAR 巨噬细胞/单核细胞用于实体瘤 CAR 单核细胞治疗的有前途的平台的实用性。
This protocol describes the surgical procedure for co-electroporation of two plasmids targeting neu- ral stem cells (NSCs) in the lateral ventricle of mouse postnatal day 2 (P2) pups: a nonintegrating plasmid encoding for the piggyBase transposase and Cas9 and an integrating piggyBac vector car- rying the oncogenes, CRISPR guide RNAs and a TDTOMATO荧光报告蛋白通过倒末端重复序列(ITRS)倾斜(图1)。在电穿孔后,瞬时CAS9表达会导致肿瘤抑制基因失活,而PiggyBase介导的PIG-GYBAC货物的整合确保了靶向NSC及其后代中的癌基因和流动性记者的稳定表达。的整合是由PiggyBase转疗的酶促活性介导的,该转移的酶活性通过切割和粘贴机制在受体细胞基因组中的TTAA位点识别并将其与它们的内容一起插入。NSC的靶向是通过最小的人GFAP(HGFAPMIN)启动子序列1-3驾驶PiggyBase/cas9的驱动表达来实现的。
参考文献1。cr birk和al。J Power Sounce 341(2016),pp。373-386。2。f lin和al。Rev 117:21(2017),pp。13123-13。s lou和al。Accora搁置2:12(2021),pp。1177-14。和Preger和Al。J位置167:12(2020)。5。z ruff和al。J攀登168(2021)。6。Jl White和Al。J16508-16514。7。g Zan和al。J Mater Chem A 9(2021),pp。19886-18。g Qian和al。SCI REP 2:9(2021),pp。100554。9。g Qian和al。能量良好(2022)2200255。10。c chen和al。ACTA 305(2019),pp。65-71。11。g Zan和al。PNAS 119:29(2022)。PNAS 119:29(2022)。
有许多服务3D打印(3DP)供应用于医疗领域,以改善和保持患者的生命。医学中的3DP已授权定制,原型化,工业化和研究。实施区域包括手术阐述,假体,牙齿,组织和器官3DP,药物剂量和药理学以及医疗药物和仪器的材料。3DP技术可用于制造人类解剖问题的确切副本,在病理学教育,兽医解剖学教育,动物学模型克隆,稀缺博物馆样本的重复以及干细胞和组织事实的重复中移动有价值的功能。3DP技术可用于替代人体器官移植,并使患者定义器官重复,该重复可以在实施复杂的手术之前使用外科医生进行运动。In this paper according to Laila M. Montaser deep expertise in liver tissue engineering, might be a prospective futurity settlement to scalability of the liver transplant which may alleviate the troubles linked with the organ lack, may recovery liver failures and may outputs skillfully functional organ to be planted or applied as an instrument located out the body, as a pragmatic pattern for medicament checking, beside for the investigation of pathological diseases such作为肝癌和肝硬化。这是蒙特萨尔主题演讲的摘要,该摘要被记录并提交给韩国首尔的3DP会议和2020年3DP会议和Expo 2020,标题为“在再生医学中的3D印刷应用”。该研讨会是由3DP会议和首尔Exl(一个新的高级制造时代)赞助的。11月18日会议的第一天是在韩国首尔(Kintex)的面对面研讨会举行的,而11月19日会议的第二天是在线(录制的)研讨会,而无需在现场聚会。她的预先录制的演示(PowerPoint slide with Meled声音)在会议的第二天与韩国翻译一起播出。本手稿显示了蒙塔瑟未来的视觉可能的生物纳米材料支架,该脚手架是由两种最广泛使用的技术制造的,即,即原位3D生物打印的未来方向的静电纺丝和3DP。本文的目的是强调女权主义科学家将干细胞的原位3DP技术素养作为一种新的,创新和革命性的技术的关注。
摘要:聚二甲基硅氧烷(PDMS)已成为植入传感器中介电层的有前途的候选者,由于其出色的生物相容性,稳定性和柔韧性。这项研究涉及一种创新的方法来产生石墨烯增强的PDMS(GR-PDMS),在该方法中,将石墨粉末剥落成聚合物溶液中的单层和几层石墨烯片中,目前与PDMS形成交联。该方法在聚合物基质中产生均匀分布的石墨烯,并在石墨烯和PDM之间进行了改进的接口,从而显着降低了PDMS中石墨烯的渗透阈值从10%降低到5%。合成的GR-PDMS表现出改善的机械性和电气性能,测试了潜在的电容压力传感器。结果表明,令人印象深刻的压力灵敏度高达0.0273 kPa -1,比原始PDM的压力敏感性高45倍,比报道的文献值高2.5倍。GR-PDMS展示了出色的压力感应能力和稳定性,从而满足了植入颅内压(ICP)传感器的要求。
在过去的十年中,对热位点表征的需求显着增加,尤其是用于设计地热能解决方案和地面电源电缆网络的设计。基于环境,地质,地球物理和岩土技术的地理位置,通常将位点的热表征结果纳入地面模型中。本文比较了土壤热位点表征的原位测试方法。比较认为方法适用性,部署方法,最大测试深度,测试持续时间和结果的不确定性。在三类原位测试之间进行了区分:(1)使用主动热产生的原位测试,(2)使用被动热量产生的原位测试和(3)没有特定热数据习得的原位测试。关键字:热位点表征;导热率;体积热容量;原位测试。
发现液体电池电解质有助于促进稳定的固体电解质相互作用(SEIS)减轻树突形成,这对于在下一代能量密集的电池中启用锂阳极至关重要。与传统的电解质溶剂相比,基于四氢呋喃(THF)的电解质系统已经通过鼓励阴离子的分解(而不是有机溶剂),从而产生了无机富丽石的SEIS,从而在实现高稳定性锂阳极方面取得了巨大成功。在此,通过采用各种不同的锂盐(即LIPF 6,Litfsi,Lifsi和Lidfob),可以证明电解质阴离子会调节SEI的无机组成和产生的特性。通过新的分析时间二级离子质谱法,例如对深度促值的分层聚类和使用综合产量的组成分析,从每个电解质系统产生的SEI的化学组成和形态。值得注意的是,Lidfob电解质提供了一个异常稳定的系统,可实现锂阳极,以0.5 mAh g -1的电流密度传递> 1500个循环,在对称细胞中的容量为0.5 mAh g -1。此外,LI //使用该电解质的LFP细胞表现出高速率,可逆的锂储存,提供139 mAh g(LFP)-1
开发用于涂层和结构部件的新型高温材料是提高燃气涡轮发动机等设备的效率和可持续性的重要课题。NiAl 基合金是一种很有前途的新型高温材料。在本研究中,研究了具有不同 Cr 和 Ta 含量的 NiAl-Ta-Cr 合金的微观结构和显微硬度。通过基于激光的定向能量沉积利用原位合金化方法通过混合元素 Ta 和 Cr 以及预合金 NiAl 粉末制造了分级样品。进行了热力学计算以预先设计合金成分。采用基材的感应预热来应对因高脆性而导致的开裂问题。结果表明,开裂随预热温度的升高而减少。然而,即使在 700 ◦ C 时,开裂也无法完全消除。扫描电子显微镜、X 射线衍射和电子背散射衍射表明,在 NiAl-Ta 和 NiAl-Cr 合金中形成了 B2-NiAl、A2-Cr 和 C14-NiAlTa 相。对于 NiAl-Ta-Cr 成分,观察到计算和实验之间相形成的偏差。在 NiAl-Ta 和 NiAl-Ta-Cr 系统中,共晶成分在 14 at.-% Ta 时可获得最大硬度值,最大值高于 900 HV0.1。