摘要 — 如今,生产商品的公司使用配备不同传感器的生产系统来有效监控其行为。大多数时候,这些传感器收集的信息主要用于生产监控,而不是分析生产系统的健康状况。这样,这些公司就拥有大量且不断增长的数据。这些数据使人们能够提取信息和知识,以便更好地控制系统,从而提高其效率和可靠性。随着几年前预测和健康管理 (PHM) 范式的出现,人们已经能够研究设备的健康状况并预测其未来发展。从全球来看,PHM 的原理是将在受监控设备上收集的一组原始数据转换为一个或多个健康指标。在此框架下,本文解决了与原始数据相关的问题。提出了一种通用方法来获取可靠且可在 PHM 应用中利用的监控数据。所提出的方法基于两个步骤:收集数据和预处理数据。该方法将应用于广播行业的真实案例,以证明其可行性。索引词——预测和健康管理、数据收集、数据清理、数据预处理、有用信息。
摘要 — 如今,生产商品的公司使用配备不同传感器的生产系统来有效监控其行为。大多数时候,这些传感器收集的信息主要用于生产监控,而不是分析生产系统的健康状况。这样,这些公司就拥有大量且不断增长的数据。这些数据使人们能够提取信息和知识,以便更好地控制系统,从而提高其效率和可靠性。随着几年前预测和健康管理 (PHM) 范式的出现,人们已经能够研究设备的健康状况并预测其未来发展。从全球来看,PHM 的原理是将在受监控设备上收集的一组原始数据转换为一个或多个健康指标。在此框架下,本文解决了与原始数据相关的问题。提出了一种通用方法来获取可靠且可在 PHM 应用中利用的监控数据。所提出的方法基于两个步骤:收集数据和预处理数据。该方法将应用于广播行业的实际案例,以证明其可行性。索引术语——预测和健康管理、数据收集、数据清理、数据预处理、有用信息。
最小噪声分数 (MNF) 变换 (Green 等,1988) 是一种由两个连续数据缩减操作组成的算法。第一个操作基于对数据中噪声的估计,该估计由相关矩阵表示。此变换通过方差来去相关并重新调整数据中的噪声。在此阶段,尚未考虑有关波段间噪声的信息。第二个操作考虑了原始相关性,并创建了一组包含原始数据集中所有波段方差加权信息的组件。该算法保留了特定的通道信息,因为所有原始波段都会对每个组件的权重做出贡献。通常,数据集中的大部分表面反射率变化都可以在前几个组件中得到解释,其余组件的方差主要由噪声贡献 (Boardman,1993)。还可以检查每个组件的权重值,指出对主要组件中包含的信息贡献最大的原始波段。然后使用主要成分将数据转换回其原始频谱空间,从而产生与提供的原始数据相同数量的转换通道。
创新与技术部了解,民权和公民自由应该是任何技术部署的中心。该部门使用自动模糊技术作为底特律街景图计划的关键部分。我们不存储个人识别信息。我们使用自动模糊软件来删除任何个人身份识别信息并删除原始数据,以便任何底特律城市或外部实体无法访问它。该技术不是预定的,也不会用于人类观察。
最小噪声分数 (MNF) 变换 (Green 等,1988) 是一种由两个连续数据缩减操作组成的算法。第一个操作基于对数据中噪声的估计,该估计由相关矩阵表示。此变换通过方差来去相关并重新调整数据中的噪声。在此阶段,尚未考虑有关波段间噪声的信息。第二个操作考虑了原始相关性,并创建了一组包含原始数据集中所有波段方差加权信息的组件。该算法保留了特定的通道信息,因为所有原始波段都会对每个组件的权重做出贡献。通常,数据集中的大部分表面反射率变化都可以在前几个组件中得到解释,其余组件的方差主要由噪声贡献 (Boardman,1993)。还可以检查每个组件的权重值,指出对主要组件中包含的信息贡献最大的原始波段。然后使用主要成分将数据转换回其原始频谱空间,从而产生与提供的原始数据相同数量的转换通道。
最小噪声分数 (MNF) 变换 (Green 等,1988) 是一种由两个连续数据缩减操作组成的算法。第一个操作基于对数据中噪声的估计,该估计由相关矩阵表示。此变换通过方差来去相关并重新调整数据中的噪声。在此阶段,尚未考虑有关波段间噪声的信息。第二个操作考虑了原始相关性,并创建了一组包含原始数据集中所有波段方差加权信息的组件。该算法保留了特定的通道信息,因为所有原始波段都会对每个组件的权重做出贡献。通常,数据集中的大部分表面反射率变化都可以在前几个组件中得到解释,其余组件的方差主要由噪声贡献 (Boardman,1993)。还可以检查每个组件的权重值,指出对主要组件中包含的信息贡献最大的原始波段。然后使用主要成分将数据转换回其原始频谱空间,从而产生与提供的原始数据相同数量的转换通道。
本工作论文的目的是研究人工智能,并帮助介绍人工智能 (AI) 系统在航空领域的挑战。它还试图介绍人工智能在减少人类工作量或提高航空和网络安全安全性等领域的潜力。人工智能有可能在不久的将来引起航空业的显着增长。此外,人工智能系统对航空原始数据的分析和处理可能是实现更安全的全球航空的关键。
对于锂离子(锂离子)电池,诸如材料老化和容量衰减之类的问题会导致电池性能降解甚至灾难性事件。预测剩余的使用寿命(RUL)是指示锂离子电池健康的有效方法,这有助于提高电池动力系统的可靠性和安全性。我们提出了一个新型的神经网络Attmoe,该网络将注意力机制与专家(MOE)的混合物结合在一起,以捕获电池RUL预测的容量淡出趋势。面对从传感器收集的原始数据始终充满噪音的问题时,Attmoe使用辍学掩码来代替原始数据。为了进行RUL预测,一个关键思想是,注意机制捕获了序列中的元素和更多注意力之间的长期依赖性,这是对包含更多降级信息的重要特征。另一个关键思想是,MoE使用许多专家来提高模型能力以实现更好的表示。最后,我们使用两个公共数据集进行了实验,以表明ATTMOE在RUL预测中有效,并且在相对误差方面提高了10%–20%。我们的项目都是开源的,可在https://github.com/xiuzezhou/rul上找到。
摘要。大规模基因组或转录组数据上的机器学习对于许多新型健康应用都很重要。例如,根据单个生物标志物,细胞和分子状态等,塞维医学对患者的医疗治疗量身定制医疗治疗。但是,所需的数据是敏感的,大量的,异质的,通常在没有专用的机器学习硬件的位置分开。由于隐私和监管原因,在受信任的第三方中汇总所有数据也是问题。联合学习是解决这一难题的有前途的解决方案,因为它可以在不交换原始数据的情况下进行分散的,协作的机器学习。在本文中,我们对联合学习框架的张力和花朵进行了比较实验。我们的测试案例是疾病预后和细胞类型分类模型的培训。我们考虑了数据异质性和架构异质性。我们衡量模型质量,对增强隐私噪声的鲁棒性,计算性和资源开销。每个联合学习框架的工作都有不同的优势。但是,我们的实验证实,这两个框架都可以在转录组数据上很容易地构建模型,并且将个人原始数据传输到具有丰富的综合资源的第三方。