生物医学工程学院的本科课程的详细概述1 - 学期I PHY 123:波浪和振荡,光学和热物理学3个学分,3个小时/周的波浪和振荡:简单的谐波振荡器,总能量,总能量,总能量,平均和谐型系统的差异方程两个身体振荡,质量减少,振荡,强迫振荡,共振;渐进波,固定波,组和相速度的波浪,功率和强度。光学:图像缺陷:球形像差,散光,昏迷,失真,曲率,色差。光理论;光线的干扰:Young的双缝实验,边缘的位移及其用途,菲涅尔双晶池,干扰薄膜的干扰,牛顿的环,干涉仪;光的衍射:菲涅尔和弗劳恩霍夫衍射,单缝衍射,圆形光圈的衍射,光学仪器的分辨能力,双裂和N裂缝的衍射,衍射,衍射光栅;极化:极化光的生产和分析,Brewster定律,MALUS定律,双重折射,Nicol Prism,光活性,偏光仪。Chem 125:有机和无机化学3个学分,3小时的原子结构:光,光和其他形式的电磁辐射的粒子和波质性质,原子光谱,原子光谱,BOHR模型,量子数,原子轨道;周期表:元素周期表,原子半径,电离能,电子亲和力,电负性。氧化和还原反应的基本概念。热物理学:温度测量原理:铂电温度计,热电温度计,高温计; Kinetic theory of gases, Maxwell's distribution of molecular speeds, Mean free path, Equipartition of energy, Brownian motion, van der Waal's equation of state, First Law of Thermodynamics and its application, Reversible and irreversible processes, Second Law of thermodynamics, Carnot cycle, Efficiency of heat engines, Carnot's theorem, Entropy and disorder, Thermodynamic functions, Maxwell relations, Clausius- Clapeyron方程,吉布斯相规,热力学第三定律。化学键合:不同类型的键合,共价键的细节,价键理论(VBT),分子几何形状,价壳电子对抑制(VSEPR)理论,轨道,分子轨道理论(MOT)的杂交。
课程注释原子吸收光谱法(AAS)。该方法的基本面。使用火焰雾化。设备。辐射源。火焰和燃烧器。分析,灵敏度,主要问题和干扰的表现。AAS使用电热雾化(石墨室)。分析的性能。石墨室内蒸发机制。应用AAS用于分析不同类型的样品的分析。电感耦合等离子体光学发射光谱法(ICP-OES)。ICP-OES,主要特征和应用领域的基本面。原子/离子排放,定性和定量分析的起源。电感耦合等离子体作为激发源。设备,光谱仪类型,分析性能,主要优势和缺点。干扰。样品制备。其他激励来源。电感耦合等离子体质谱法(ICP-MS)。ICP-MS,设备和光谱仪类型的基本面。血浆作为离子源的作用。ICP-MS的灵敏度。主要优势和缺点,干扰。 分析的性能和对不同类型样本的应用。 原子荧光光谱法(AFS)。 AFS的基本原理,主要特征。 设备,主要优势和缺点。 分子光谱。 光谱法的基本原理,主要。 基本概念。 分子的电子结构。ICP-MS的灵敏度。主要优势和缺点,干扰。分析的性能和对不同类型样本的应用。原子荧光光谱法(AFS)。AFS的基本原理,主要特征。设备,主要优势和缺点。分子光谱。光谱法的基本原理,主要。基本概念。分子的电子结构。分子的电子结构。能量水平,能量转变和相应的光谱电子吸收光谱。有机化合物的紫外光谱,其结构,从光谱获得的信息。溶剂,结合和结构变化对吸收带的强度和位置的影响。紫外光谱。吸收带,其性质。实际应用。定量分析。振动光谱。方法的原理。分子键的振荡,其数学描述。红外光谱。近,远,主要的红外辐射区。对红外光谱的解释。影响吸收峰的位置,宽度,强度的因素。样品制备,设备和记录技术。拉曼光谱法。该方法的本质,是研究的对象。从拉曼光谱获得的信息。表面增强的拉曼光谱。质谱法。技术和原理。获得分子离子的方法。 分裂规则和机制,来自质谱的信息。 质谱与色谱法的组合。 不同分析方法的组合。 阅读清单1。 J. Nolte,ICP发射光谱法;实用指南,威利,2003年。 2。 L. Ebdon,E.H。 Evans,A。Fisher,S.J。 Hill,《分析原子光谱概论》,Wiley,1998年。 3。 4。 S.M.获得分子离子的方法。分裂规则和机制,来自质谱的信息。质谱与色谱法的组合。不同分析方法的组合。阅读清单1。J. Nolte,ICP发射光谱法;实用指南,威利,2003年。 2。 L. Ebdon,E.H。 Evans,A。Fisher,S.J。 Hill,《分析原子光谱概论》,Wiley,1998年。 3。 4。 S.M.J. Nolte,ICP发射光谱法;实用指南,威利,2003年。2。L. Ebdon,E.H。 Evans,A。Fisher,S.J。 Hill,《分析原子光谱概论》,Wiley,1998年。 3。 4。 S.M.L. Ebdon,E.H。 Evans,A。Fisher,S.J。Hill,《分析原子光谱概论》,Wiley,1998年。3。4。S.M.S.M.J. A.C. Broekaert,带有火焰和等离子体的分析光谱,Wiley,2002。NELMS,ICP质谱手册,Blackwell Publishing,2005年。5。L.H.J. Lajunen,P。Peramaki,《原子吸收和排放的光谱化学分析》,第二版,皇家化学学会,2004年。 6。 H. Hesse,A。Meyer,A。Zeeh,有机化学中的光谱方法,Thieme,1997年。 7。 R. M. Silverstein,F.X。 Webster,有机化合物的光谱鉴定,Willey,1997 8。 P. Atkins,J。DePaula,“ Atkin的物理化学”,2006年。 9。 D.Mickevičius„CheminėsAnalizėsMetodai”,1 Tomas。,1998 10。 R.Kellner,J.M. Mermet,M。Otto,H.H。 widmer,分析化学,1998L.H.J.Lajunen,P。Peramaki,《原子吸收和排放的光谱化学分析》,第二版,皇家化学学会,2004年。6。H. Hesse,A。Meyer,A。Zeeh,有机化学中的光谱方法,Thieme,1997年。7。R. M. Silverstein,F.X。 Webster,有机化合物的光谱鉴定,Willey,1997 8。 P. Atkins,J。DePaula,“ Atkin的物理化学”,2006年。 9。 D.Mickevičius„CheminėsAnalizėsMetodai”,1 Tomas。,1998 10。 R.Kellner,J.M. Mermet,M。Otto,H.H。 widmer,分析化学,1998R. M. Silverstein,F.X。Webster,有机化合物的光谱鉴定,Willey,1997 8。P. Atkins,J。DePaula,“ Atkin的物理化学”,2006年。9。D.Mickevičius„CheminėsAnalizėsMetodai”,1 Tomas。,1998 10。R.Kellner,J.M.Mermet,M。Otto,H.H。widmer,分析化学,1998
第一单元:现代物理学。 1.1.迈克尔逊-莫雷实验、狭义相对论、时间膨胀、长度收缩、洛伦兹变换、速度总和、相对论质量、质量和能量。 1.2.光电效应、光的量子理论、X射线、康普顿效应、电子对产生。 1.3.德布罗意波、粒子衍射、不确定性原理、波粒二象性。 1.4.原子模型、阿尔法粒子散射、卢瑟福散射公式、电子轨道、原子光谱、玻尔原子、对应原理。 1.5.波动方程,薛定谔方程,应用:盒子中的粒子,谐振子。 1.6.氢原子的薛定谔方程、量子数、选择规则。 1.7.中子,稳定原子核,结合能,液滴模型,层模型。 1.8.放射性、放射性系列、衰变、阿尔法、贝塔和伽马。第 2 单元:量子。 2.2 狄拉克代数和符号。 2.2 量子力学。 2.3 量子计算。 2.4 量子通信。
摘要:我们通过视频展示了我们的经验,以补充分析化学讲座,以使本科生进行器乐元素分析。这包括有关我们如何计划,制作和利用视频在学期结束时查看课程内容的详细说明。分析案例研究的重点是在两个井水样品中测定镁,重点是原子吸收光谱,同时还将结果与电感耦合等离子体光学发射光谱和滴定测量结果进行比较。在演讲中,我们通过在显示各个视频部分之前向学生询问如何进行测量的建议来聘请学生。学生之间的一项调查表明,对这种方法的反应非常积极。我们通过从视频制作中做出决策和选择来证明我们的视频制作方法,例如录制和编辑,明确和结论,并以计划和制作类似视频的实用建议,以可视化案例研究。关键字:二年级本科,上级本科,分析化学,解决问题/决策,基于多媒体的学习,原子光谱,定量分析■简介
简介:科学计数法和有效数字。不同系统中的单位。矢量:矢量回顾、矢量导数、线积分和面积分、标量的梯度。力学:坐标系。恒定加速度下的运动,牛顿定律及其应用,匀速圆周运动。涡旋运动,摩擦力。功和能量。势能、能量守恒、能源和我们的环境。静电和磁学:库仑定律、高斯定律、导体周围的电场、电介质。磁场。电流上的磁力。半导体物理学:半导体中的能级、空穴概念、本征区域和非本征区域、质量作用定律、P-N 结、晶体管。波和振荡:具有一个自由度的系统的自由振荡、经典波动方程。连续弦的横模。驻波。波的色散关系。光学与激光:光学和激光的基本介绍。衍射光栅。激光器,粒子数反转。谐振腔。量子效率。氦氖激光器、红宝石激光器和二氧化碳激光器。现代物理学:光电效应、康普顿效应、氢原子的玻尔理论、原子光谱、质量减小、德布罗意假设、布拉格定律、电子显微镜、塞曼效应、原子核、质能关系、结合能、核力和基本力、指数衰减和半衰期。
DSC 5:量子力学简介单元3教学大纲:简要讨论古典物理学解释黑体辐射,光电效应,康普顿效应,原子的稳定性和原子光谱。康普顿散射:Compton Shift的表达(带推导)。物质波:物质波,电子显微镜,波数据包的颗粒的波浪描述,组和相位速度的波浪描述,物质波的实验证据:Davisson-Germer实验,G.P Thomson的实验及其意义。海森伯格不确定性原理:海森堡动量与位置,能量和时间,角动量和角位置之间关系的基本证明,伽玛射线显微镜思维实验的不确定性原理的说明。不确定性关系的后果:电子在单个缝隙中的衍射,核中电子的不存在。对光子和电子的两缝实验。线性叠加原理因此。_______________________________________________________________________________________ Brief discussion on failure of classical physics to explain black body radiation, Photoelectric effect, Compton effect, stability of atoms and spectra of atoms.古典力学无法解释以下现象:1)它在原子维度的区域中不存在,即无法解释
II课程概述欢迎参加化学部门的特殊入门课程,为那些喜欢化学并考虑在现场或相关主题的计划的人!在CHM 151年内,我们将强调引导您进入化学研究边界的领域,同时解决重要的基本原理。通过适当的示例,我们将重点关注现代感兴趣的主题,让您知道该领域从几个不同的角度提供了什么。这些包括开发新的特征技术,对社会利益的有机化合物的设计以及高级材料的特性和潜在用途。本课程的第一部分是对有机分子的结构和反应性基本原理的深入研究,以及对有机分子在生物过程中的重要性的介绍。下一节介绍了结构确定方法,以及包括新型材料和催化剂在内的无机元素的特性和用途。最后,最后一部分涵盖了原子分子结构,反应性和能量基础的物理原理,以及从原子光谱到太阳能电池到气候变化的各种应用。我们希望CHM 151Y将超出您的期望。我们在这里支持您的学习,并在您的成功方面都非常投入!我们将感谢您的评论和建议,以便我们可以使本课程尽可能有趣和刺激。确实可以与课程协调员,讲师,实验室协调员和助教的课程协调员完全讨论任何事情。
基础量子力学(BQM):11. 在量子力学的背景下解释算子、状态、特征值和特征函数这些术语(首先针对双态系统,然后扩展到具有连续特征值的系统),并确定物理量的期望值和不确定性。12. 确定给定势阱(例如无限势阱和屏障)中粒子的波函数,并列举其在技术中的应用示例(例如量子点显示器、存储设备)。13. 使用特征函数的正交性并对叠加中的量子系统进行基本分析。14. 讨论量子现象(例如量子叠加、波函数坍缩、量子隧穿和海森堡不确定性原理),并解释它们与我们对现实的感知的冲突。15. 使用氢原子的量子数:n、l、m 确定相应的特征函数(来自给定的表格)并解决相关的简单问题。课程内容 基础(FND) 波的性质 光速 叠加、衍射和干涉 原子和亚原子粒子 狭义相对论(SR) 参考系和伽利略变换 狭义相对论和洛伦兹变换的假设 长度收缩和时间膨胀 闵可夫斯基时空图 解决悖论 相对论动量、动能和能量 基础核物理(BNP) 放射性粒子(𝛼,𝛽 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑎𝑛𝑑 𝛾−𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛) 核裂变和聚变 放射性 质能当量 医学应用和剂量 量子物理(QP) 黑体辐射物理量的量化光电效应康普顿散射和波长对的产生/湮没双缝实验戴维森-杰默实验波粒二象性氢原子(玻尔模型和原子光谱)基础量子力学(BQM)特征值、特征函数和算子两能级系统薛定谔方程和波函数概率(密度)无限和有限势阱(盒子中的粒子)量子谐振子势垒/台阶期望值和不确定性
Dóm tér 9,匈牙利 电子邮件:galbx@chem.u-szeged.hu 摘要 激光诱导击穿光谱 (LIBS) 是原子光谱中一种强大且蓬勃发展的分析技术。尽管 LIBS 也适用于气态、气溶胶和液体样品,但它主要用于固体样品的分析。这是因为所有其他类型的样品在灵敏度和实用性方面都带来了多重挑战。(批量)液体样品的分析尤其具有挑战性,因为它们容易出现聚焦困难、飞溅、等离子猝灭等,导致检测限和重现性降低以及激光能量需求大幅增加 [1]。为了应对这些挑战,文献中报道了多种方法。它们中的大多数依赖于液固转化,而另一些则使用专门的设备将液体呈现为射流、薄膜或液滴等。[2, 3]。尽管如此,虽然消除了批量液体分析的一些缺点,但迄今为止提出的方法在灵敏度、重现性或实用性方面与固体分析相比仍然存在不足。在本研究中,我们提出了一种通过 LIBS 分析液体微样品的替代方法,即利用亲水性强的纳米多孔玻璃作为基底。这种方法的前提是毛细管力会将与玻璃接触的任何水样驱赶到纳米孔中,形成一个细小的两相结构,其中的固体玻璃框架实际上充当激光目标。这种结构在实践中有多种优势:a.) 分析需要非常少量的液体样品(5-10 µ L);b.) 不存在批量液体样品的常见问题;c.) 纳米级结构确保有效的激光耦合和液体样品的均匀分布,从而有利于重现性。对这种直接液体分析方法进行了彻底的研究,研究了分析优势和能力以及可实现的检测限和重现性。致谢作者非常感谢 EKÖP-24-I 提供的资金支持。塞格德大学的大学研究奖学金计划,以及国家研究、开发和创新办公室 (NKFIH) 的 K146733 项目和由奥地利英飞凌科技股份公司在 IPCEI 微电子课程中资助的工业合作参考文献 [1] G. Galbács,Anal. Bioanal. Chem. 407 (2015) 7537。 [2] K. Keerthi,SD George,SD Kulkarni,S. Chidangli,VK Unnikrishnan,Opt. Laser Technol. 147,(2022) 107622。 [3] I. Goncharova,D. Guichaoua,S. Taboukhat,A. Tarbi 等,Spectrochim. Acta B 217 (2024) 106943。
具有应用的国际原子,分子,材料,纳米和光学物理学会议(ICAMNOP 2023)将重点介绍原子,分子,材料,材料,纳米和光学物理学的发展,这些发展被证明是强大的科学,支持了许多其他科学和技术领域的科学和技术,包括工业,信息,能源,信息,全球全球变化,全球全球变化,国防,国防,健康,健康,空间和空间,适用,健康,空间,空间和技术。该会议将涉及基本级别以及使用先进技术的原子,离子,分子和纳米结构的实验和理论研究。使用高野外和超快速物理的现代工具,不再仅仅观察自然,而可以重塑和重定向原子,分子,颗粒或辐射。这种朝着量子动力学迈进的新动力对于基本物理和应用能源科学的未来发展至关重要。第三代同步源提供了研究辐射的新机会 - 物质相互作用。光学技术在对原子和分子bose-einstein冷凝物的创造,理解和操纵中也起着非常重要的作用。需要对此类属性和相互作用的完整量子机械描述,因此,本次会议旨在将实验和理论科学家汇总在“原子,分子,材料,纳米和光学物理学”各个领域工作的实验和理论科学家,以共享和交换新的想法。纳米物理学的快速增长领域也被引入为单独的会议主题,其中包括纳米结构和光子学。会议中感兴趣的主题包括:原子与分子结构,碰撞过程,簇,表面以及外来的颗粒和应用,激光冷却,捕获和玻璃 - 爱因斯坦的凝结,高精确度和超速现象,高谐波产生,高谐波和应用,特定的范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出范围,超出的范围,超出的范围,超出范围,超出范围,或者在范围反物质,自由电子激光器,高功率激光器,量子光学及其应用于中学系统的生物分子,原子光谱和分子物理学,颗粒加速度,其他主题涵盖的其他主题是:太阳能和恒星等化的光谱,原子能宇宙,原子宇宙:原子质:spectra:spectra of Cool as of Cool as of Cool as of Cool。在上一个会话中,也将专门用于在石油,可再生能源,环境科学,信息技术,信息技术,健康和教育中的原子,分子,材料,纳米和光学物理学的应用。