获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
简介。近年来,变异量子算法[1-3]和量子机学习[4 - 9]吸引的最初兴奋已被贫瘠的高原现象[10-56]缓解。也就是说,越来越意识到,大量的量子学习体系结构表现出损失功能的景观,这些景观将指数置于系统大小的平均值上。因此,确定事实证明不会导致贫瘠高原的建筑和培训策略已成为一个高度活跃的研究领域。然而,从某种意义上说,这些策略都利用了问题的一些简单基础结构。这引起了一个问题:是否能够避免避免贫瘠的高原以有效地经典地模拟损失函数的相同结构吗?在这里,我们认为这个问题的答案是“是”。具体来说,我们声称可以使用多项式时间内运行的经典算法模拟可证明不表现出贫瘠高原的损失景观。重要的是,此模拟仍可能需要在初始数据采集阶段使用量子计算机[57 - 60],但是它不需要在量子设备或混合量子量子式优化环上实现的参数化量子电路。这些论点可以理解为无贫瘠高原景观中各种量子电路的信息处理能力的消除形式。