©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecom- mons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
a 洛桑大学和大学医院中心微生物研究所细胞内细菌研究中心,Bugnon 48, 1011,洛桑,瑞士 b 马里兰大学牙科学院微生物发病机制系,美国马里兰州巴尔的摩 c 苏黎世大学兽医学院兽医病理学研究所病理生物学系,Winterthurerstrasse 268, CH-8057,苏黎世,瑞士 d 华盛顿大学全球健康系,美国华盛顿州西雅图 e 加州大学旧金山分校医学院医学和儿科系,美国加利福尼亚州奥克兰 f 堪萨斯大学分子生物科学系,美国堪萨斯州劳伦斯 g 维也纳大学微生物学和环境系统科学中心,1090,维也纳,奥地利 h 自由大学医学中心医学微生物学和感染控制系免疫遗传学实验室,荷兰阿姆斯特丹 i 公共卫生研究所健康基因组学 (IPHG),遗传学和细胞生物学系,研究学院 GROW (肿瘤学和发育生物学学院),马斯特里赫特大学健康、医学和生命科学学院,荷兰马斯特里赫特 j 荷兰沙眼衣原体参考实验室,医学微生物学和感染控制系,自由大学医学中心,荷兰阿姆斯特丹 k 内布拉斯加大学医学中心病理学和微生物学系,美国内布拉斯加州奥马哈 l 阿姆斯特丹大学阿姆斯特丹 UMC 医学微生物学系,荷兰阿姆斯特丹 m 赫尔辛基大学和赫尔辛基大学医院病毒学系,芬兰赫尔辛基 n 基因学研究中心,阳光海岸大学,昆士兰州,澳大利亚 o 杜克大学分子遗传学和微生物学系,北卡罗来纳州达勒姆,27710,美国 p 根特大学生物科学工程学院动物科学与水生生态学系,Coupure Links 653, B-9000, 根特, 比利时
摘要:近年来,越来越多地探索了构成宿主体内微生物和宿主体内微生物社区之间关系的性质。微生物,包括细菌,古细菌,病毒,寄生虫和真菌,经常与宿主共同发展。在人类中,微生物群的结构和多样性根据宿主的免疫力,饮食,环境,年龄,生理和代谢状况,医学实践(例如抗生素治疗),气候,季节和宿主遗传学而有所不同。最近下一代测序(NGS)技术的出现增强了观察能力,并可以更好地理解微生物群中不同微生物之间的关系。宿主与其微生物群之间的相互作用已成为对公共卫生应用具有治疗和预防兴趣的微生物研究领域。本综述旨在评估原核生物和真核群落之间相互作用的当前知识。在分析了研究中使用的元基因组方法的简要描述后,我们总结了可用出版物的发现,描述了细菌群落与原生动物,蠕虫,蠕虫和真菌之间的相互作用,在实验模型中或在人类中或在人类中。总体而言,我们观察到在某些微生物可以改善宿主的健康状况的情况下,有益的影响存在,而其他微生物的存在与病理学有关,从而导致对人类健康的不利影响。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月13日。 https://doi.org/10.1101/2025.01.13.632720 doi:Biorxiv Preprint
基因组对于理解微生物生态学和进化至关重要。高通量、长读长 DNA 测序的出现使得从环境样本中大规模恢复微生物基因组成为可能。然而,由于这些环境极其复杂,扩大土壤和沉积物的微生物基因组目录一直具有挑战性。在这里,我们对在丹麦收集的 154 个土壤和沉积物样本进行了深度、长读长纳米孔测序,并通过优化的生物信息学流程恢复了 15,314 个新微生物物种的基因组,其中包括 4,757 个高质量基因组。恢复的微生物基因组涵盖 1,086 个新属,并为 612 个先前已知的属提供了第一个高质量参考基因组,将原核生物生命树的系统发育多样性扩大了 8%。长读长组装体还能够恢复数千个完整的 rRNA 24 操纵子、生物合成基因簇和 CRISPR-Cas 系统,而这些系统在之前的陆地基因组目录中都未被充分代表且高度碎片化。此外,将恢复的 MAG 整合到公共基因组数据库中可显著提高土壤和沉积物宏基因组数据集的物种级分类率,从而增强陆地微生物组表征。通过这项研究,我们证明了长读长 29 测序和优化的生物信息学能够以经济高效的方式从高度复杂的生态系统中恢复高质量的微生物 30 基因组,而生态系统仍然是最大的未开发生物多样性来源,可用于扩展基因组数据库和填补生命之树的空白。32
。CC-BY-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 8 月 21 日发布。;https://doi.org/10.1101/2024.08.21.608784 doi:bioRxiv 预印本
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年8月21日。 https://doi.org/10.1101/2024.08.21.608784 doi:biorxiv preprint
在过去的几十年中,CRISPR-Cas 系统的广泛选择通过实现对不同生物体的多模态遗传操作而彻底改变了生物技术。从分子工程的角度出发,我们概括了不同的 CRISPR 组件以及如何设计它们以用于特定的遗传工程应用。我们首先介绍用于通过基因编辑和基因调控来编程新生物功能的 Cas 蛋白和系留效应物库。我们回顾了当前的向导 RNA (gRNA) 设计策略和计算工具,以及如何通过调控 gRNA 表达构建基于 CRISPR 的遗传回路。然后,我们介绍了基于 CRISPR 的生物传感、生物生产和生物治疗在体外和体内原核系统中的最新进展。最后,我们讨论了原核 CRISPR 技术中即将出现的应用,这些应用将在不久的将来改变合成生物学原理。
海洋异养原核物主要使用转运蛋白占据环境底物。靶向特定底物的转移者的模式塑造了异养原核生物在海洋有机循环中的生态作用。在这里,我们报告了由于分类学变化而导致的原核生物转运蛋白表达的大小分级模式,这是由针对ATP结合盒(ABC)转运蛋白和TONB依赖性转运蛋白(TBDTS)的多种“ OMICS”方法揭示的。底物特异性分析表明,海洋SAR11,杜鹃花和大洋螺旋藻使用ABC转运蛋白在自由生活的部分中使用有机氮,而替代词,细菌植物和sphingomonadales和sphingomonadales在碳纤维上使用TBDTS上的有机含量和含碳纤维有机物。转运蛋白的表达还支持深海原核生物的不同生活方式。我们的结果表明,有机物中的转运蛋白差异反映了原核生物介导的有机物循环中明显的小众分离。