开发检测运动相关大脑活动的新方法是科学许多方面的关键,尤其是在脑机接口应用中。尽管使用传统方法已经揭示了一些众所周知的运动相关脑电图特征,但它们仍然缺乏对运动相关模式的稳健分类。在这里,我们介绍了运动相关大脑活动的新特征,并通过考虑感觉运动皮层中 µ 节律的事件相关去同步 (ERD),即跟踪相应频带中功率谱密度的下降,揭示了潜在神经元动力学的隐藏机制。我们假设运动相关 ERD 与 µ 波段神经元活动的随机波动抑制有关。这是由于相应振荡模式中涉及的活跃神经元群体数量减少。在这种情况下,我们预计在感觉运动皮层记录的 EEG 信号将具有更规则的动态和更复杂的降低。为了支持这一点,我们通过递归量化分析 (RQA) 应用信号复杂性测量。具体来说,我们证明某些 RQA 量化器对于检测运动开始的时刻非常有用,因此能够对执行的动作的侧面性进行分类。
1. 稿件标题 1 触觉意象引起的事件相关去同步:EEG 研究 2 2. 缩写标题 3 触觉意象的 EEG 研究 4 3. 按出版文章中出现的顺序列出所有作者姓名和所属机构 5 6 7 Lev Yakovlev 1,2 , Nikolay Syrov 1,2 , Andrei Miroshnikov 2 , Mikhail Lebedev 3,4 , Alexander 8 Kaplan 1,2,5 9 10 1 Vladimir Zelman 神经生物学和脑康复中心,Skolkovo 科学技术研究所 11 ,俄罗斯莫斯科 12 13 2 波罗的海神经技术和人工智能中心,Immanuel Kant Baltic Federal 14 大学,加里宁格勒,俄罗斯 15 16 3 莫斯科国立罗蒙诺索夫大学力学与数学学院, 17 俄罗斯 18 19 4 俄罗斯科学院谢切诺夫进化生理学和生物化学研究所,俄罗斯圣彼得堡 20 21 22 5 人类和动物神经生理学和神经计算机接口实验室 23 莫斯科国立大学生物学院生理学系,俄罗斯莫斯科 24 25 26 4. 作者贡献: 27
摘要 - 基于运动图像的大脑计算机界面(MI-BCIS)是神经技术,可利用运动皮质上的感觉运动节奏的调节,分别称为事件相关的去同步(ERD)(ERD)和综合化(ERS)。ERD/ERS的解释与用于估计它们的基线的选择直接相关,并可能导致误导ERD/ERS可视化。实际上,在BCI范式中,如果两次试验被几秒钟分开,则将基线接近上一个试验结束的基线可能会导致ERD的过度估计,而将基线的基线太接近即将到来的试验可能会导致ERD估计不足。在MI-BCI研究中,这种现象可能会引起对ERD/ERS现象的功能误解。这也可能会损害MI与REST分类的BCI性能,因为这种基准通常被用作静止状态。在本文中,我们建议研究几个基线时间窗口选择对ERD/ERS调制和BCI性能的影响。我们的结果表明,考虑选定的时间基线效应对于分析MI-BCI使用过程中ERD/ERS的调制至关重要。
摘要:本研究的目的是检查功率谱并探索注意力表现过程中的功能性大脑连接/断开情况,以注意力 d2 测试和创造力测试为衡量标准,以正常发育儿童的 CREA 测试为衡量标准。为此,我们通过使用相位同步性(即锁相指数 (PLI))对 15 名 9 至 12 岁儿童通过 Emotiv EPOC 神经耳机获取的 EEG 信号进行检查来检查大脑连接。此外,作为补充,还对获取的信号进行了功率谱分析。我们的结果表明,在 d2 测试过程中,全局伽马相位同步增加,而全局 alpha 和 theta 波段去同步。相反,在 CREA 任务期间,功率谱分析显示 delta、beta、theta 和 gamma 波段显著增加。连接分析显示 theta、alpha 和 gamma 明显同步。这些发现与其他神经科学研究一致,表明多种大脑机制确实与创造力有关。此外,这些结果对于在临床和研究环境中评估注意力功能和创造力以及对具有正常和非正常发育的儿童的神经反馈干预具有重要意义。
不同语言在标记动词和论元之间的依赖关系方面有所不同,例如,通过格来标记。一项眼动追踪和脑电图图片描述研究考察了格标记对巴斯克语和瑞士德语句子规划时间过程的影响。德语为主语分配了一个未标记的(主格)格,而巴斯克语则专门通过作格格标记施事论元。对施事的注视和 θ 和 alpha 频带中的事件相关同步 (ERS),以及 alpha 和 beta 频带中的去同步 (ERD) 揭示了格标记对早期句子规划时间过程的多种影响。在巴斯克语中,说话者在准备带有作格标记施事的句子时,很早就决定在规划下进行格标记,而带有未标记施事的句子允许延迟跨语言的结构承诺。这些发现支持句子规划的分层增量解释,并强调了跨语言差异如何影响语言使用的神经动力学。
运动想象 (MI) 脑电信号广泛应用于脑机接口 (BCI) 应用中,因为它们通过想象肢体运动让用户完全控制 [9]。想象和物理肢体运动会引起微节律同步和去同步,这可以通过使用脑电图技术在感觉运动皮层上进行探索 [10]。许多研究已经实现了特征选择和降维的具体技术,其中包括遗传算法 (GA) [11]、顺序前向特征选择 (SFFS) [12]、线性判别分析 (LDA) [13]、经验模态分解 (EMD) [14] 和 Fisher 判别分析 (FDA) [15]。因此,高效的线性分类器如支持向量机 (SVM) [16] 和 LDA [17] 被广泛用于特征分类。此外,贝叶斯分类器 [18]、隐马尔可夫模型分类器 (HMM) [19] 和 k-最近邻 (k-NN) 分类器 [20] 同样为 EEG 特征分类提供了有竞争力的结果。在这方面,Miao 等人 [21] 将右手食指解码应用于手指康复。Nijisha 等人 [22] 使用基于公共空间模式 (CSP) 的空间滤波器和单个卷积层对左手、右手、双手和脚 MI-EEG 信号进行分类。
摘要 — 脑控车辆 (BCV) 是一种已成熟的技术,通常专为残疾患者设计。本综述重点介绍与脑控车辆最相关的主题,特别是考虑使用生物信号(如脑电图 (EEG)、眼电图和肌电图)控制的地面 BCV(例如,移动汽车、汽车模拟器、真实汽车、图形和游戏汽车)和空中 BCV(也称为 BCAV)(例如,真实四轴飞行器、无人机、固定翼、图形直升机和飞机)。例如,基于 EEG 的算法从大脑的运动想象皮层区域检测模式以进行意图检测,例如事件相关去同步\事件相关同步、状态视觉诱发电位、P300 和生成的局部诱发电位模式。我们已经确定,报告的最佳方法采用机器学习和人工智能优化方法,即支持向量机、神经网络、线性判别分析、k-最近邻、k-均值、水滴优化和混沌拔河优化。我们考虑了以下指标来分析不同方法的效率:生物信号的类型和组合、时间响应和准确度值与统计分析。本研究对过去十年的主要发现进行了广泛的文献综述,指出了该领域的未来前景。
*电子邮件:elena.fenoglio@iit.it 简介:运动想象 (MI) - 无需运动输出即可在脑海中演练运动 - 被广泛用作脑机接口 (BCI) 的控制策略,因为它能引发与真实运动类似的神经反应,同时成本低、非侵入性且安全 [1]。然而,15-30% 的基于 MI 的 BCI 用户是“BCI 文盲”:他们无法控制系统 [2]。为了解决这个问题,我们提出了一种将 MI 与动作观察 (AO)(深思熟虑和结构化的运动观察)相结合的范例,并辅以增强现实 (AR),以探索其对运动相关大脑反应的影响,从而可能增强基于 MI 的 BCI 范例。材料、方法和结果:25 名健康参与者使用触摸面板用右臂执行伸手任务 - 想象的(运动想象-MI)或真实的(运动执行-ME)(图 1A)。以随机顺序重复使用 AR(真实条件)和不使用 AR(增强条件)的任务,前者显示虚拟右臂以提供 AO 提示。我们通过计算运动执行/想象期间 alpha 和 beta 波段的事件相关去同步 (ERD) 来分析电生理 (EEG) 信号,基线为运动开始前 500 毫秒。
追踪和预测伤害性输入的时间结构对于促进生存至关重要,因为适当和立即的反应对于避免实际或潜在的身体伤害必不可少。不同时间结构的伤害性刺激所引起的神经活动已有描述,但将伤害性刺激转化为疼痛感知的神经过程尚未完全阐明。为了研究这个问题,我们记录了 48 名健康参与者的脑电信号,这些参与者接受了 3 种不同持续时间和 2 种不同强度的热伤害性刺激。我们观察到疼痛感知和几种大脑反应受到刺激持续时间和强度的调节。至关重要的是,我们确定了 2 种与疼痛感知出现相关的持续大脑反应:来自岛叶和前扣带皮质的低频成分 (LFC,< 1 Hz) 和来自感觉运动皮质的 α 波段事件相关去同步 (α-ERD,8–13 Hz)。这两种持续的大脑反应是高度耦合的,α 振荡幅度随 LFC 相位波动。此外,刺激持续时间转化为疼痛感知的过程由 α -ERD 和 LFC 连续介导。本研究揭示了伤害性刺激引起的大脑反应如何反映伤害性信息转化为疼痛感知过程中发生的复杂过程。
运动图像(MI)EEG信号在BCI应用中广泛使用,因为它们通过想象身体肢体运动为用户提供了全部控制[9]。想象的和物理的肢体运动引起了MU-RHILTHM同步和去同步,可以使用感觉运动皮层上的EEG技术进行探索[10]。许多作品已经实施了特定技术选择和降低维数的特定技术,其中遗传算法(GA)[11] [11],顺序的正向特征选择(SFF)[12],线性判别分析(LDA)[13] [13],经验模式分解(EMD)[14]和FISHER INCTICNANT INCINICINANT ANARESSICS(FISHER INCTINANT分析)(FDA)[15] [15] [15] [15] [15]。因此,有效的线性分类器(例如支持向量机(SVM)[16]和LDA [17]被广泛用于特征的分类。此外,贝叶斯分类器[18],隐藏的马尔可夫模型分类器(hmm)[19]和K-Nearest邻居(K-NN)分类器[20]同样为EEG特征分类提供了竞争结果。从这个意义上讲,Miao等。[21]将右手食指解码用于手指康复。在他们的角度,Nijisha等人。[22]使用基于常见空间图案(CSP)和单个卷积层的空间过滤器对左手,右手,双手和脚MI-EEG信号进行分类。