本文的主题是分析卫星数据,以便为未来的商业钻探任务选择地点,以进行原地资源勘察。报告介绍了可能在月球上发现的具有潜在经济价值的原材料。报告给出了氦-3和钛等原材料的分布图、钾 (K) 和磷 (P) 含量较高的地点以及稀土矿物 (REE)。在英文文献中,它们被称为 KREEP 矿床 [Warren and Wasson, 1979]。为了完成这项工程,分析了可以转化为氢和氧,然后用作火箭燃料的水冰矿床的分布情况。报告介绍了月球两极附近此类冰的潜在矿床位置。这项工作的主要目的是根据某些参数确定月球南极的潜在位置。这些位置可能是未来的探索对象。此外,还确定了月球车下降和驶出潜在矿床的路线,同时考虑了日照程度和坡度。分析的参数分为三个部分:地质、地理和技术参数。研究中使用的卫星数据来自美国宇航局的“LROC:QuickMap”数据库。“极地水当量氢”层用于搜索月球上的水矿床。
摘要 本文从所有可能的角度研究了向量空间中的线性伊藤随机微分方程。在这种情况下,势向量描述了作用于量子系统的经典噪声的大小。该向量势可以表示为其参数的线性函数,其中厄米算子作为其系数,因为其参数被假定为未知的。对于二阶扰动,可以借助势扰动参数确定幺正演化算子。至于第二项,它写成关于布朗运动的双迭代随机积分,而第一项写成伊藤随机积分。在控制量子系统时,来自环境的噪声可能是一个主要障碍;这种技术可以提供帮助。通过学习检测和调节噪声,提高计算机等量子技术的可靠性和实用性。如果势的参数受到噪声的影响,那么它们的可靠性就会降低。我们重点关注特殊情况,即势能是这些参数的线性函数,以厄米算子为系数。为了找到达到 O ( ǫ ) 的幺正演化算子,我们可以将 O ( ǫ ) 项写为关于布朗运动的伊藤随机积分,将 O ( ǫ 2 ) 项写为关于布朗运动的双迭代随机积分。
Quantum Circuit 2025 2019 2029 0.960 0.096 0.890 12,711 3,757 12,019 0.927 0.001 Quantum Optics 2017 2016 2025 0.266 0.097 0.900 1,208 1,119 2,360 0.993 0.001 Note : values of the 𝑡𝑡 𝑚𝑚 , ∆𝑡𝑡 and k are estimated by logistic model as described in methodology.通过Bootstrap方法估算具有95%置信度的最小参数和最大参数,它们显示了引导程序分析中的置信区域。r 2值(确定系数)是可以通过解释变量来解释的因变量或响应变量中方差的比例。f检验的p值评估总体模型是否非常适合数据。根据等式(2),每个阶段由三个参数确定。在曲线(T M)中表示成熟度阶段的中点或开始(50%),(K)表示饱和度。这些参数中的每个参数都具有y - 和x轴的值。在生长曲线中,x轴代表年内的时间,y轴代表每个参数的值。例如,Qubit S-Curve的饱和点(k)为61.131,这意味着量子技术有望在2035年达到限制(请参见表2)。直到逻辑模型的10%表示增长阶段,直到成熟度阶段为50%,直到成熟度阶段为50%,直到90%的增长阶段。使用Loglet Lab软件估算模型的所有参数。
在本文档中,提出了一个新型的图像加密设计系统,该系统利用定点流密码混乱图。该系统由固定的混乱地图与生成的32位伪号(PN)组成,所有这些都使用字段可编程门阵列(FPGA)通过Xilinx System Generator(XSG)环境实现。这项工作涉及的最常见的基于混乱的密码是逻辑,Lozi和帐篷。每种类型的参数确定解密原始图像的原始像素所需的关键空间,Logistic Map具有一个参数R,Lozi具有两个参数α和β,帐篷有一个参数µ。主要想法是结合另一个参数伪数(PN)以增加关键空间,这是针对蛮力攻击的安全性能的主要衡量标准。创新的伪数量生成器(PRBG)称为这些混沌图被称为固定点级联混沌maps-prbg(fpccm-prbg),其中八个最不重要的位,32位伪数字生成器(PN)此方法被称为固定点casgoto cascaTo cascadoico casgotic maps-ppcm fpcm fpcm。使用国家标准技术研究所(NIST)测试评估生成的密钥的随机性,包括频率,频率(Mono BIT)和运行测试。通过直方图分析,相关系数分析,信息熵,像素更改速率和结构相似性评估的安全性能。Xilinx系统生成器是用于工作实施的MATLAB/SIMULINK环境中的有效工具。32 MB/秒。32 MB/秒。使用Zynq 7000 SOC ZC702评估套件上使用共模拟方法实施的系统,关键空间为2 288,吞吐量为269。
Covid-19 是由严重急性呼吸综合征冠状病毒 2 引起的,于 2020 年初爆发大流行。该疾病的迅速蔓延促使全球采取前所未有的应对措施,包括学术机构、监管机构和行业。事实证明,疫苗接种和非药物干预措施(包括保持社交距离)是抗击疫情的最有效策略。在这种情况下,了解 Covid-19 传播的动态行为以及可能的疫苗接种策略至关重要。在本研究中,提出了一个易感-感染-移除-患病模型(SIRSi 疫苗),该模型考虑了未报告但具有传染性的病例。该模型考虑了感染或接种疫苗后获得暂时免疫的可能性。这两种情况都会导致疾病的传播。在疫苗接种率和隔离指数的参数空间中,确定了无病平衡和地方病平衡的交替和互斥稳定性的跨临界分叉图。根据模型的流行病学参数确定了这两个点的现有平衡条件。分叉图使我们能够估计每组参数预期的最大确诊病例数。该模型采用了来自巴西圣保罗州首府圣保罗的数据,该数据描述了所考虑数据窗口的确诊感染病例数和隔离指数。此外,模拟结果表明,隔离指数的周期性小幅度波动可能导致易感人群和确诊病例数出现周期性无阻尼振荡行为。所提出的模型的主要贡献如下:当疫苗接种与社会隔离相结合时,只需付出最少的努力,同时还要确保平衡点的存在。该模型可以为政策制定者提供有价值的信息,帮助制定结合疫苗接种和非药物干预措施(例如保持社交距离和佩戴口罩)的疾病预防缓解策略。此外,SIRSi 疫苗模型促进了对未报告的感染但具有传染性的病例信息的定性评估,同时考虑了暂时免疫、疫苗接种和社会隔离指数。© 2023 ISA。由 Elsevier Ltd. 出版。保留所有权利。
利益声明H.H.是Eisai的雇员,担任《老年痴呆症与痴呆症》杂志的高级副编辑,自2019年5月以来就没有收到任何费用或酬金。H.H.是11项专利的发明者,没有获得特许权使用费:体外多参数确定方法,用于诊断和早期诊断神经退行性疾病的专利。8916388;诊断和早期诊断神经退行性疾病的体外程序。8298784;神经退行性标记的精神病疾病出版物。20120196300;体外多参数测定方法,用于诊断和早期诊断神经退行性疾病出版物。20100062463;用于诊断和早期诊断神经退行性疾病出版物的体外方法。20100035286;用于诊断和早期诊断神经退行性疾病的体外程序。20090263822;诊断神经退行性疾病的体外方法。7547553; CSF诊断用于诊断痴呆症和神经炎症性疾病的诊断方法。20080206797;诊断神经退行性疾病出版物的体外方法。2008019966;神经退行性标记的精神病疾病出版物。20080131921;基于脑脊液中降脂蛋白水平的升高:美国专利NO,诊断痴呆症和神经炎症性疾病的方法。10921330。P.G. n.t。 已向Eisai提供了咨询。 p.m.t. A.V.P.G.n.t。已向Eisai提供了咨询。p.m.t.A.V.A.V.是Eisai Inc. J.C.的雇员 Grifols, Janssen, Karuna, Lexeo, Lilly, Lundbeck, LSP, Merck, NervGen, Novo Nordisk, Oligomerix, Otsuka, PharmacotrophiX, PRODEO, Prothena, ReMYND, Renew, Resverlogix, Roche, Signant Health, Suven, Unlearn AI, Vaxxinity, VigilNeuro pharmaceutical,评估和投资公司。已获得Biogen,Inc。的研究赠款,该研究与本手稿无关,并向Kairos Venture Capital,Inc。Y.H.提供了咨询。是Eisai Inc. M.C.的雇员是Eisai Inc. A.V.的雇员没有宣布与本文有关的竞争性财务利益,他对本文的贡献完全反映了他对此事的学术专业知识。是Eisai Inc.的雇员(2019年11月至6月2021年)。A.V. 自2019年11月以来没有收到任何费用或酬金。 在2019年11月之前,他从Roche,Magqu LLC和Servier获得了酬金。A.V.自2019年11月以来没有收到任何费用或酬金。在2019年11月之前,他从Roche,Magqu LLC和Servier获得了酬金。
举办了 15 次短期培训访问,并进行了 42 次流动。开发了总结联盟提供的 RI 和服务的最新情况的数据库,确定了可能缺少的基础设施/服务,以实现最新 CST 实施计划的目标,并与利益相关者进行了讨论。最终确定了协调融资机会的概念说明,并举办了研讨会。EU-SOLARIS 成为 ERIC。与其他 CST 相关的欧盟项目和国际倡议开展合作。准备了实施 TA 活动的文件。发起了 5 次电话会议;完成了 4 次访问活动。4 次关于 TA 的网络研讨会。制定了熔盐 (MS) 对结构材料的动态腐蚀协议,研究了材料作为潜热或显热能储存介质的可行性的方法,并制定了原型测试指南。确定了 MS 回路的关键组件,并审查了当前程序。举办了关于 CSP MS 工厂组件特性的传播研讨会。制定了报告 DWT 系统行为的协议和指南,对适当的测试程序进行了通用定义,以评估 DWT 中要实施的新组件和材料的性能,改进了模拟软件并验证了其中使用的相关性。实施了新的实验装置。完成了开发用于热力学、动力学和循环稳定性测试的标准化材料测试的工作。对太阳能燃料 (SF) 生产工艺领域的 200 多种出版物进行了文献综述,并用于制定 SF 生产反应堆的品质因数。改进了用于评估 CSP 接收器热机械性能的测试台并进行了首次太阳能测试。组装了相机原型,基于一种改进 CSP 太阳能接收器温度测量的新方法。进行了 RRT 发射率测量。使用红外摄像机进行了参数识别以确定线性集热器管的温度。改进了加速老化装置。制定了脏污镜测量指南,分析了脏污散射行为,并提供了基于模型的分析传递函数。在测试台和太阳能集热器上生成了更多 REPA 负载数据,包括传感器数据分析。开发了新的抛物面槽 (PT) 接收器热损失测量程序。验证了混合预测模型,开发了预测模型。研究了使用天空成像仪数据对 PT 性能参数确定准确性的影响。发表了菲涅尔 RI 对 DNI 变化的稳健性。LFR
聚苯乙烯酮(PEEK)是一种具有高机械性能,出色的耐热性,耐化学性和低热稳定性和可传播性(良好绝缘)的材料。所有这些特性都使许多领域中使用的材料,例如航空航天工程,电子,汽车工程,化学工业,医疗设备。除了用作纯树脂外,还可以用各种增强材料(例如玻璃纤维,碳纤维,石墨等)加固。较高的制造成本意味着该材料主要用于需要高性能的应用。由用碳纤维加固的树脂基质制成的复合材料是本研究的主题。由于该行业的众多应用和需求,聚醚酮是一种良好的材料,并且许多作品呈现出有关此材料的结果。两次评论试图涵盖与该材料相关的多种方面,用作生产碳纤维增强复合材料的树脂[1,2]。在使用PEEK矩阵和纤维增强复合材料时产生的艺术状态和问题可以在许多评论中找到(即[2-7])。[8]中显示了PEEK基质和碳纤维增强材料的基本特性。在[9]中获得了带有短纤维和杂化碳纤维的PEEK复合材料的行为的结果。测试是在不同温度下从室温开始,然后在[-50°C的范围内进行的; +85°C]研究温度依赖性。它的使用允许该领域的重大发展。在许多实际应用中,温度的效果变得很重要,有许多方法可以依赖纤维增强复合材料的温度依赖性。为了研究这种依赖性,在[10]中提出了构型定律,该定律使用ramberg-osgood的关系,为进行研究的温度范围提供了令人满意的估计。实验室检查在-45°C和75°C之间的温度范围内验证所提出的模型。本文中提出的模型具有较小数量的参数,并提供比现有模型更高的精度,并在本文中进行了比较。在[11]中介绍了通过增材制造过程获得的结构组件分析模型的研究。在[12]中研究了单向窥视和连续的碳纤维增强热塑性材料。在循环载荷的情况下,将寿命与在静态测试中获得的寿命进行比较,在这两种情况下,应力水平都是相同的。在专业文献[13]中充分记录了PEEK/碳型复合材料的粘弹性行为,并提到了根据时间和温度参数确定这些复合材料的行为的方法。Schapery [14]提出的用于研究粘弹性行为的模型的特征是研究人员广泛接受。在[15]中改善了该模型,以考虑到研究人员随着时间的推移观察到的Schapery模型的不一致。结果表明范围最近的一篇论文[16]的作者表明,Schapery的非线性粘弹性表征的方法可以有效地建模测试。
利益声明H.H.是Eisai的雇员,并担任《老年痴呆症与痴呆症》杂志的审查编辑。H.H.是11项专利的发明者,没有获得特许权使用费:体外多参数确定方法,用于诊断和早期诊断神经退行性疾病专利。8916388;诊断和早期诊断神经退行性疾病的体外程序。8298784;神经退行性标记的精神病疾病出版物。20120196300;体外多参数测定方法,用于诊断和早期诊断神经退行性疾病出版物。20100062463;用于诊断和早期诊断神经退行性疾病出版物的体外方法。20100035286;用于诊断和早期诊断神经退行性疾病的体外程序。20090263822;诊断神经退行性疾病的体外方法。7547553; CSF诊断用于诊断痴呆症和神经炎症性疾病的诊断方法。20080206797;诊断神经退行性疾病出版物的体外方法。2008019966;神经退行性标记的精神病疾病出版物。20080131921;基于脑脊液中的降钙素水平的增加:美国专利编号。10921330。A.N. 没有个人冲突要宣布,但他的雇主NCGG与Shimadzu分享了一些专利,并获得了特许权使用费。 S.M. S.O.A.N.没有个人冲突要宣布,但他的雇主NCGG与Shimadzu分享了一些专利,并获得了特许权使用费。S.M. S.O.S.M.S.O.S.O.J.C. has provided consultation to Acadia, Actinogen, Alkahest, Alpha Cognition, AriBio, Biogen, BioVie, Cassava, Cerecin, Corium, Cortexyme, Diadem, EIP Pharma, Eisai, GemVax, Genentech, Green Valley, GAP Innovations, Grifols, Janssen, Karuna, Lilly, Lundbeck, LSP,默克,神经,Novo Nordisk,寡头,光学会,Ono,Otsuka,Prodeo,Proteo,Prothena,Remynd,Resverlogix,Roche,Roche,Sage Therapeutics,Simcere Health,Simcere Health,Simcere,Sunbird Bio,Suven,Suven,Suven,Truebinding,TrueBinding,及其Vaxxinetial Pharmace Pharmace Pharmace Pharmace Pharmace Pharmace Pharmace Pharmaceutical Pharmaceutical,评估,评估,和投资公司。在Senscio Systems的董事会和AICURE Technologies,Alzpath和Boston Millynia Partners的科学顾问委员会中,并已获得Biogen,C2N,Eisai,Novartis,Novartis和Roche/Genentech的咨询费用。具有用于神经退行性疾病的精密医学的多项专利,并且是CX Precision Medicine,Inc。L.M.S.的创始科学家。已经获得了Biogen的教学活动的赔偿。Y.H.,M.C。和R.B.是Eisai的雇员。A.V. 没有宣布与本文有关的竞争利益。 A.V. 对本文的贡献完全反映了他对此事的学术专业知识。 A.V. 是Eisai的雇员(2019年11月至6月2021年)。 A.V. 自2019年11月以来尚未收到任何费用或酬金。 2019年11月之前,A.V。 从Roche,Magqu和Servier获得了酬金。 K.B. 曾担任顾问和顾问委员会,Alzpath,Bioarctic,Biogen,Eisai,Lilly,Lilly,Moleac Pte。 S.E.S.A.V.没有宣布与本文有关的竞争利益。A.V. 对本文的贡献完全反映了他对此事的学术专业知识。 A.V. 是Eisai的雇员(2019年11月至6月2021年)。 A.V. 自2019年11月以来尚未收到任何费用或酬金。 2019年11月之前,A.V。 从Roche,Magqu和Servier获得了酬金。 K.B. 曾担任顾问和顾问委员会,Alzpath,Bioarctic,Biogen,Eisai,Lilly,Lilly,Moleac Pte。 S.E.S.A.V.对本文的贡献完全反映了他对此事的学术专业知识。A.V. 是Eisai的雇员(2019年11月至6月2021年)。 A.V. 自2019年11月以来尚未收到任何费用或酬金。 2019年11月之前,A.V。 从Roche,Magqu和Servier获得了酬金。 K.B. 曾担任顾问和顾问委员会,Alzpath,Bioarctic,Biogen,Eisai,Lilly,Lilly,Moleac Pte。 S.E.S.A.V.是Eisai的雇员(2019年11月至6月2021年)。A.V. 自2019年11月以来尚未收到任何费用或酬金。 2019年11月之前,A.V。 从Roche,Magqu和Servier获得了酬金。 K.B. 曾担任顾问和顾问委员会,Alzpath,Bioarctic,Biogen,Eisai,Lilly,Lilly,Moleac Pte。 S.E.S.A.V.自2019年11月以来尚未收到任何费用或酬金。2019年11月之前,A.V。从Roche,Magqu和Servier获得了酬金。K.B. 曾担任顾问和顾问委员会,Alzpath,Bioarctic,Biogen,Eisai,Lilly,Lilly,Moleac Pte。 S.E.S.K.B.曾担任顾问和顾问委员会,Alzpath,Bioarctic,Biogen,Eisai,Lilly,Lilly,Moleac Pte。S.E.S.S.E.S.Ltd,Novartis,Ono Pharma,Prothena,Roche Diagnostics和Siemens Healthineers;曾在朱利叶斯临床和诺华的数据监测委员会任职;已经进行了讲座,生产教育材料,并参加了有关AC免疫,Biogen,Celdara Medical,Eisai和Roche诊断的教育计划;并且是哥德堡AB(BBS)的脑生物标志物解决方案的联合创始人,该解决方案是哥德堡大学风险投资培养机计划的一部分。已分析了C2N诊断向华盛顿大学提供的数据,并在EISAI的顾问委员会任职。