周细胞是大脑毛细血管上的细胞。令人兴奋的新证据表明,周细胞可以调节血脑屏障并扩张毛细血管以在需要时增加血流量。这两种作用对于大脑健康都至关重要,并且周细胞可能会在疾病(例如中风或阿尔茨海默病)期间出现功能障碍或死亡。我们的研究重点是周细胞中的钙信号传导,这可能对调节血流很重要。我们想知道:是什么导致了周细胞中的钙信号?这些信号会产生什么结果?这些问题对于理解周细胞生理学及其在大脑中的作用至关重要。这项工作还可能导致未来开发用于治疗用途的周细胞特异性药物。加入我们充满活力的团队的学生将有机会直接与小鼠打交道,包括小鼠处理、训练和注射。学生还将学习双光子显微镜,这是神经科学领域最新的、最先进的显微镜技术。他们将使用这款显微镜实时记录活体小鼠大脑周细胞中前所未见的钙信号的美丽影片。通过学习使用 MATLAB 和 R 等程序分析这些钙信号影片,学生还将获得宝贵的计算机技能。学生还将通过参加小组环境下的定期实验室会议来培养沟通和解决问题的能力。我们的实验室位于 Bannatyne 校区的 Apotex 中心,这是一个充满活力的社区,鼓励来自不同健康研究学科的科学家进行互动。
Kerr-cat 量子比特是一种玻色子量子比特,其中多光子薛定谔猫态通过向具有 Kerr 非线性的振荡器施加双光子驱动来稳定。随着猫尺寸的增加,比特翻转率受到抑制,这使得该量子比特成为实现针对噪声偏置量子比特量身定制的量子纠错码的有希望的候选者。然而,实现稳定和控制该量子比特所必需的强光物质相互作用传统上需要强大的微波驱动器,这会加热量子比特并降低其性能。相反,增加与驱动端口的耦合消除了对强驱动器的需求,但代价是较大的 Purcell 衰减。通过在芯片上集成有效的带阻滤波器,我们克服了这种权衡,并在具有高相干性的可扩展二维超导电路中实现了 Kerr-cat 量子比特。该滤波器在量子比特频率下提供 30 dB 的隔离度,在稳定和读出所需的频率下衰减可忽略不计。我们通过实验证明了具有八个光子的猫的量子非破坏读出保真度为 99.6%。此外,为了对该量子比特进行高保真通用控制,我们将快速 Rabi 振荡与 X ð π = 2 Þ 门的新演示相结合,通过对稳定驱动器进行相位调制。最后,检查了该架构中的寿命与振荡器中多达十个光子的猫大小的关系,实现了高于 1 毫秒的位翻转时间,并且相位翻转率仅呈线性增加,这与电路的理论分析非常一致。我们的量子比特有望成为占用空间小的容错量子处理器的构建块。
1 斯坦福大学材料科学与工程系 2 斯坦福大学电气工程系,斯坦福大学 3 苏黎世联邦理工学院巴塞尔生物系统科学与工程系 4 斯坦福大学生物工程系 5 斯坦福大学神经外科系 6 斯坦福大学化学工程系 7 斯坦福大学医学院,斯坦福大学 8 斯坦福大学汉森实验物理实验室 通讯作者:Nicholas A. Melosh (nmelosh@stanford.edu) 硅基平面微电子学是一种强大的工具,可用于以高时空分辨率可扩展地记录和调节神经活动,但以三维 (3D) 为目标的神经结构仍然具有挑战性。我们提出了一种在硅微电子学上直接制造组织穿透微电极的 3D 阵列的方法。利用基于双光子聚合和可扩展微加工工艺的高分辨率 3D 打印技术,我们在平面硅基微电极阵列上制作了 6,600 个高 10-130 µm、间距 35 μm 的微电极阵列。该工艺可以定制电极形状、高度和定位,以精确定位 3D 分布的神经元群。作为概念验证,我们解决了在与视网膜交互时专门定位视网膜神经节细胞 (RGC) 胞体的挑战。该阵列经过定制,可插入视网膜并从胞体记录,同时避开轴突层。我们用共聚焦显微镜验证了微电极的位置,并以细胞分辨率记录了高分辨率自发 RGC 活动。与平面微电极阵列的记录不同,这揭示了强大的躯体和树突成分,而轴突贡献很少。该技术可以成为一种多功能解决方案,用于将硅微电子与神经结构连接起来,并以单细胞分辨率大规模调节神经活动。
头足类动物在无脊椎动物中以认知能力、适应性伪装、新颖结构和通过 RNA 编辑重新编码蛋白质的倾向而引人注目。然而,由于缺乏遗传上可处理的头足类模型,这些创新背后的机制尚不清楚。CRISPR-Cas9 等基因组编辑工具允许在不同物种中进行定向突变,以更好地将基因和功能联系起来。一种新兴的头足类模型 Euprymna berryi 产生大量胚胎,这些胚胎可以在其整个生命周期中轻松饲养,并且具有已测序的基因组。作为原理证明,我们在 E. berryi 中使用 CRISPR-Cas9 来靶向色氨酸 2,3 双加氧酶 (TDO) 基因,色氨酸 2,3 双加氧酶 (TDO) 是形成色素色素所需的酶,色素色素是头足类动物眼睛和色素细胞中的色素。将靶向 tdo 的 CRISPR-Cas9 核糖核蛋白注射到早期胚胎中,然后培养至成年。出乎意料的是,注射的标本是有色的,尽管通过对注射动物 (G0s) 进行测序验证了目标位点的插入缺失。经过多代繁殖的 TDO 纯合敲除系也有色。令人惊讶的是,E. berryi 中也存在编码吲哚胺 2,3 双加氧酶 (IDO) 的基因,该酶在脊椎动物中催化与 TDO 相同的反应。使用 CRISPR-Cas9 对 tdo 和 ido 进行双敲除产生了白化表型。我们展示了这些白化病在双光子显微镜对大脑中的 Ca 2+ 信号进行体内成像中的实用性。这些数据表明,制造基因敲除头足类动物系的可行性,可用于对这些行为复杂的生物体的神经活动进行实时成像。
双光子荧光显微镜 (2PM) 的最新进展使得活体小鼠的血管网络大规模成像和分析成为可能。然而,提取密集毛细血管床的网络图和矢量表示仍然是许多应用中的瓶颈。血管矢量化在算法上很困难,因为血管具有多种形状和大小,样本通常光照不均匀,并且需要较大的图像体积才能获得良好的统计能力。最先进的三维血管矢量化方法通常需要分割(二值)图像,依赖于手动或监督机器注释。因此,逐体素图像分割会受到人类注释者或训练者的偏见。此外,分割图像通常需要在骨架化或矢量化之前进行补救形态学过滤。为了解决这些限制,我们提出了一种矢量化方法,可从未分割图像中直接提取血管对象,而无需机器学习或训练。 MATLAB 中的无分割自动化血管矢量化 (SLAVV) 源代码已在 GitHub 上公开提供。这种新方法使用简单的血管解剖模型、高效的线性滤波和矢量提取算法来消除图像分割要求,用手动或自动矢量分类取而代之。半自动化 SLAVV 在小鼠皮层微血管网络(毛细血管、小动脉和小静脉)的三个体内 2PM 图像体积上进行了演示。矢量化性能已被证明对于血浆或内皮标记对比度的选择具有稳健性,并且处理成本与输入图像体积成比例。全自动 SLAVV 性能在不同质量的模拟 2PM 图像上进行评估,所有图像均基于大(1.4 × 0.9 × 0.6 mm 3 和 1.6 × 10 8 体素)输入图像。从自动矢量化图像计算出的感兴趣的血管统计数据(例如体积分数、表面积密度)比从强度阈值图像计算出的统计数据具有更高的图像质量稳定性。
集成硅光子学凭借其可扩展、高保真度的CMOS制造工艺,以及在标准电信波长下工作的能力,成为量子光子技术的主要候选平台[1,2]。难以区分的相关光子对源是此类平台支持量子网络和信息处理的基本构建模块[1]。当通过自发四波混频 (SFWM) 产生双光子时,最大的挑战是将单光子输出与强的经典泵浦场隔离开来[3]。此前,我们展示了CMOS平台中的第一个光子对源[4],以及第一个在单个芯片上集成SFWM 腔和泵浦抑制滤波器的源[5],无需额外的外部泵浦滤波。该全无源器件采用级联阵列,每个波长间隔开微环 SFWM 源,当出现制造差异时,可确保一个源环与基于微环的高阶泵浦抑制滤波器对齐。然而,这种无源设计阻止将此类集成源的多个副本调整到同一波长。在本文中,我们介绍了一种基于微环的源和基于热可调环的集成泵浦抑制滤波器。这消除了源阵列,将设备占用空间减半,并能够在 CMOS 光子学平台上实现和控制多个此类源之间的量子干涉。该设计还包括一个基于我们的双层单向设计 [ 6 ] 的 1550 nm 新型光栅耦合器设计,模拟了 ∼ 1 dB 的光纤到芯片耦合损耗。源电路[图 4] 。 1 (a)]由一个可调微环谐振器SFWM对发生器腔和一个由四个级联的二阶滤波器形成的可调8极带通滤波器组成,占用460×220μm的整体芯片面积,包括
基于光的投影技术越来越多地用于制造仿生组织。[1–3] 最近,通过激光光束的断层投影,已经可以快速生物制造复杂的细胞结构。[4–6] 然而,在制造肌肉和肌腱等各向异性组织时,大多数光导组织制造策略在有效细胞排列方面的潜力有限[7,8],因为大多数方法都侧重于宏观特征(> 100 μ m),而这些特征缺乏这些组织中高度排列的细胞和细胞外组织所必需的地形线索。对于可以实现细胞级(< 30 μ m)分辨率的双光子聚合和超高分辨率数字光处理等技术,非相干光源将光聚合限制在小范围(< mm)内发生,而这需要逐层策略才能实现大型组织工程结构的制造。 [1,9,10] 速度和可扩展性的折衷限制了这些方法的转化潜力。指导性线索(如纤维成分以及纤维和挤压式生物打印的组合)已被广泛研究,因为它们具有促进细胞排列和排列组织工程结构成熟的潜力,如肌肉、肌腱、神经和软骨组织。[7,11–14] 研究表明,长宽比增大的拓扑线索会影响基底内/上细胞的生物活性。例如,通过微流体或软光刻制备的棒状微凝胶(长宽比为 10)能够增加细胞取向,与微球相比,高长宽比微棒之间的空隙可以更好地实现细胞取向。[15,16] 通过微图案化技术创建的具有超高长宽比(> 20:1)的拓扑特征可以有效诱导细胞粘附和排列。 [17,18] 尤其是当限制的尺寸接近细胞核的尺度(<10μm)时,这些纵向限制导致的核变形变得明显。细胞核的细长形状可以影响细胞分化、基因表达和再生,后者通过染色体重组和激活 DNA 修复机制来实现;[19,20]
•如果无法完成臀部/脊柱或臀部/髋关节,或者个人的重量限制; •甲状旁腺功能疗法,前臂对于诊断至关重要。在小儿个体中,首选对全身钙的测量,因为它有助于减少骨骼生长的个体。这适用于未骨骼成熟的小儿个体,如未限制生长板(例如15岁以下)所记录的那样。指示时,理想情况下应使用同一机器在同一设施中进行轴向中央位点的重复DXA。BMD结果之间的差异可能仅仅反映了测试测量的固有变异性;因此,测试设施必须计算相关测量位点的最小显着变化(LSC),以确定代表实际变化的差异幅度。这是使用设施的常规技术专家,经过治疗的个人和设备确定的。超声密度测定法是一项基于办公室的技术。与骨质疏松骨相比,正常骨表现出更高的超声波衰减,并且与通过骨骼的波的速度更大有关。超声密度测定法没有辐射暴露,并且可以在办公室设置中购买机器。尚不清楚该技术是否可以用来预测对药物治疗的反应(即减少骨折)。定量计算机断层扫描取决于钙化组织对电离辐射的差异吸收,仅用于中心测量。与DXA相比,定量计算机断层扫描较少可用,并且与辐射暴露相对较高和相对较高的成本相关。对先前获得的骨盆的临床计算机断层扫描的分析可能提供了一种评估生物力学骨强度的替代方法。单光子和双光子吸收率和放射学吸收率现在很少使用,并且可能被认为已过时。加利福尼亚州医疗政策的蓝盾:椎骨骨折评估用光密度计的评估解决了使用DXA筛查椎骨骨折的筛查,该骨折被认为是研究的。进行骨密度评估的决定应基于个人的断裂风险特征和骨骼健康评估。除了年龄,性别和BMD外,世界卫生组织(WHO)骨折风险评估工具中包括的风险因素是:
目前正在开发脑机接口,以恢复因受伤或疾病而瘫痪的人的运动能力。虽然治疗潜力巨大,但接口的长期稳定性对于广泛的临床应用至关重要。虽然许多因素都会影响记录和刺激性能,包括电极材料稳定性和宿主组织反应,但这些因素尚未在人体植入物中进行研究。在这项临床研究中,我们试图通过外植体分析来表征材料完整性和生物组织封装,以确定影响电生理性能的因素。我们检查了从参与皮层内 BCI 研究的两名人类参与者身上移植的总共六个犹他阵列。在一名参与者 (P1) 体内植入了两个铂 (Pt) 阵列 980 天,在另一名参与者 (P2) 体内植入了两个 Pt 和两个氧化铱 (IrOx) 阵列 182 天。我们观察到,所有六个阵列的记录质量都呈现出相似的趋势,即在最初 30 – 40 天内峰峰值电压最初增加,随后在 P1 中逐渐下降。使用光学和双光子显微镜,我们观察到在参与者 P1 中植入较长时间的两个阵列的组织包裹程度更高。然后,我们使用扫描电子显微镜和能量色散 X 射线光谱来评估材料退化。发现 Pt 阵列的所有材料退化指标在植入时间较长的参与者中更为明显。两个 IrOx 阵列接受了短暂的调查刺激,其中一个阵列显示大多数受刺激部位的铱丢失。记录性能似乎不受这种铱损失的影响,这表明 IrOx 涂层的附着力可能受到刺激的影响,但金属层直到或之后才脱落阵列移除。总之,植入时间较长的阵列中组织包裹和材料降解更为明显。此外,这些阵列的信号幅度和阻抗也较低。应开发新的生物材料策略,以最大限度地减少纤维包裹并增强材料稳定性,以实现较长植入期内的高质量记录和刺激。
我们推出《生物医学光学快报》光学与大脑专题,该专题将于 2023 年 4 月 24 日至 27 日在加拿大温哥华举行的 Optica 生物光子学大会:生命科学中的光学部分举行。这次会议是讨论现有和新兴技术以及未来方向的论坛,以揭示健康和患病大脑的新亮点。光学提供了一个独特的工具包,用于从微观到宏观尺度对活体和完整大脑进行多尺度成像。同时,基因标记策略为图像神经功能提供了光学对比,而光遗传学允许用光控制细胞功能。为了涵盖实现这些不同目标所需的专业知识,会议汇集了工程师、光学和医学科学家、生物学家、化学家和医生。本期特刊中的文章代表了参与《光学与大脑》的社区的广泛范围。漫射光学器件可以利用近红外光探测人体组织中厘米深处,从而无创地到达活体大脑。一篇评论文章 [ 1 ] 强调了使用近红外光谱 (NIRS) 的非侵入性光学成像方法在成人和新生儿中测量氧化细胞色素-c-氧化酶。另一项使用传统血红蛋白 NIRS 的研究 [ 2 ] 表明,虚拟现实游戏任务可以比简单的抓握动作更好地调节大脑功能网络。这一发现对于中风后手部麻痹患者恢复抓握能力具有重要意义。光学方法还可以阐明脑组织的结构和生化组成。在癌症诊断中,另一项研究 [ 3 ] 调查了激光诱导击穿光谱 (LIBS) 和电火花辅助激光诱导击穿光谱 (SA-LIBS) 在区分胶质母细胞瘤 (GBM) 和少突胶质细胞瘤 (OG) 与非肿瘤浸润脑组织中的应用。作者展示了 SA-LIBS 在区分肿瘤组织以及多参数表征方面的优势。在另一项工作 [ 4 ] 中,展示了一种用于立体定向神经外科无标记成像的双光子微内窥镜。该装置足够小,可以放入手术套管中。另一项工作 [ 5 ] 使用连续切片偏振敏感光学相干断层扫描展示了人类脑组织块中髓鞘的无标记成像