适用性,出色的化学和物理稳定性以及有利的晶体生长习惯。金属卤化物被高度视为重要的光学功能材料,因为它们的优势是易于制备,丰富的配位环境,宽透明范围,高激光诱导的损伤阈值,并且在发光的边界eLS中应用,太阳能电池,太阳能电池,激光频率转换等等。22 - 29中,二元金属卤化物由于其简单的组成和成本效果而被广泛使用:KBR通常用作傅立叶变换红外(FT-IR)光谱的背景材料,因为其广泛的透明范围超过25 m m; 30 CAF 2和BAF 2具有出色的机械性能,热稳定性和辐射抗性,以及从深紫外线(UV)到IR区域的高透明度,这些透明度可用于光学棱镜,透镜,楔形板,隔膜,隔膜和其他重要的光学组件。31由于上述原因,二元金属卤化物的出色物理和化学特性与我们对下一代双重晶体材料的期望一致,这使得它们被视为具有巨大潜力的双折射材料国库。另一方面,金属卤化物显示出各种的配位模式,包括线性,三角形锥体,四面体和方形锥体结构,这是有希望的机会,可以识别具有相当性的构建块的隔离性各向异性各向异性材料。在基于Hg的卤化物中,除了传统的[HGX 4](X =卤素)四面体外,还存在很少的[X - HG - X]或[X - HG - HG - HG - HG - X]线性单位。25通过比较和筛选,由于其丰富的散装和广泛的透明范围,基于二进制的基于二进制汞(基于HG)的卤化物已成为我们的焦点。32 - 36 in
在光纤中基于KERR非线性的四波混合(FWM)过程已被证明可以在过去二十年中启用许多全光信号处理设备,例如波长转换器[1,2],光相结合器[3-5] [3-5]和相位敏感的放大器[6,7]。这些全光学系统可能会成为未来高容量波长多路复用(WDM)网络的重要组成部分,这要归功于它们在超宽带宽和延迟较低的情况下运行的潜力。有多种通常用于FWM的非线性介质,包括硅[8-10]硝酸硅[11-15]和半导体光学放大器(SOAS)[16-19],对于全光信号处理应用来说是有希望的。值得注意的是,硅和SOA在适当地进行工程时表现出了它们在执行极化信号处理操作[20-22]方面的潜力。由于其低耦合损耗(当剪接时)和低传播损失,光纤(尤其是高度非线性纤维(HNLF)[23,24]的低耦合损耗(当时)[23,24],分散较低)仍然是一种流行的培养基。在许多FWM过程中,需要非生物的纤维。但是,实际上,现实世界中的纤维样品通常将具有一些小的残留双折射,导致它们被描述为“低折双发性”纤维。此类纤维[23]已知在核心直径中表现出随机的纵向变化,进而导致纵向变化的双折射。纵向变化的双折射随机使输入信号的极化状态随机,使基于FWM的设备对极化更敏感,这可能对需要极化的强度敏感的应用特别有害[25]。众所周知,即使是从相同的纤维线轴捕获的样品的纤维双发性分布也不同于样品之间,这使得给定系统的确切行为降低了基于纤维的FWM技术的可预测性,更复杂的商业化。
轴突周围的神经细胞膜。这种独特的结构促进了通过公认的盐传导现象3及其结构各向异性在此报告的光学成像中的基础。在CNS的脱髓鞘疾病中,对髓磷脂的损害或促进它的少突胶质细胞是疾病过程的主要作用,并且可能由于自身免疫反应,病毒或毒素,代谢性疾病以及低氧或缺血性挑战而发生。4脱髓鞘疾病的经典例子是多发性硬化症(MS),其中CNS炎症会导致对髓磷脂的大规模侮辱,5引起可变的运动,认知和神经精神症状的可变范围。6超出MS,增加证据指向髓磷脂分解是其他主要神经退行性疾病的重要因素,包括与年龄相关的认知能力下降,7 - 9阿尔茨海默氏病(AD),10-14和Stroke。15 - 17