过去二十年对数据进行解释。这一点很重要,因为该技术不直接提供承运人资料。相反,电阻率曲线是通过分析深度相关的扩散电阻数据间接获得的。这需要物理
图 2. 所提出的光控编码元件的设计和特性。a) 元原子编码元件的详细结构,在 SiO 2 基板上构建了 1 μm 厚的金方块和 1 μm 厚的 GeTe 方块图案。b) 编码元件两种状态的示意图:状态“0”表示 GeTe 的非晶态(绝缘态),状态“1”表示 GeTe 的晶体(导电)态。c) 和 d) 两种状态下编码元件的相应反射特性(c 幅度和 d 相位)。e) GeTe 层表面电阻随温度的变化(双探针测量),显示两种状态下的电特性相差六个数量级以上,并且冷却至室温时晶体状态具有非挥发性行为。 f) 有限元模拟 GeTe 层在具有不同能量密度的 35 纳秒长单脉冲紫外激光照射下的温度上升情况:单脉冲的通量为 90 mJ/cm 2,将使最初为非晶态的 GeTe 的温度升至其结晶温度 ( TC ) 以上,而随后的 190 mJ/cm 2 激光脉冲将使 GeTe 的温度升至其局部熔化温度 TM 以上,并将材料熔化淬火回非晶态。下图是拟议的 1 比特元原子的配置和示意图
抽象的电生理记录是检查认知和行为的神经元底物的强大技术。神经蛋白探针提供了独特的能力,可以在许多具有高时空分辨率的大脑区域捕获神经元活动。神经质子也很昂贵且针对急性,固定的使用,这两者都限制了可以研究的行为和操纵的类型。最近的进步通过显示了慢性植入物,植物和神经质子探针的再利用来解决成本问题,但是这些方法尚未优化用于自由移动行为。有特定的需要改善电缆/连接稳定性。在这里,我们扩展了这项工作,以演示在完全自由移动的操作行为期间,在大鼠模型中演示慢性神经偶像记录,外观和重复使用。类似于先前的方法,我们将探针和媒体置于3D打印的外壳中,该外壳避免了将探针直接固定到头骨上的直接固定,从而实现了最终的外植体。我们展示了创新,以允许对环境因素的保护和更稳定的布线设置进行慢性逆流联系,以减少可能中断记录的张力。我们以执行两种不同行为任务的大鼠的方式来统治这种方法,在每种情况下显示:(1)在操作室中自由移动大鼠中的慢性单或双探针记录,(2)神经偶像可重复使用1.0探针1.0探针在回收后持续良好的单单单位产量持续良好的单一单位产量持续良好。因此,我们证明了在更广泛的物种和制剂范围内的神经偶像记录的潜力。