1 2 3使用膜蒸馏5 6 7 8 Jingbo Wang A†,Yiming Liu A†,Unnati Rao A,Mark Dudley B,Mark Dudledle B,Navid Dehdari Ebrahimi c,navide ebrahimi c,jingeeng y jincheng loub,jincheng fei han fei han, 1 2 3向膜/水界面进行热能的高盐盐盐水4,Mark Dudley B,Navid Dehdari Ebrahimi c,navide ebrahimi c,navide dehdari ebrahimi c,navid liu a, Hoek A,Nils Tilton B,Tzahi Y. Cath E,Craig S. Turchi F,Michael B. Heeley G,10 Y. Sungtaek Ju C,David Jassby A* 11 12 13 13 14 15加利福尼亚洛杉矶大学(UCLA)科罗拉多州矿业学院,机械工程系,美国加州大学戈尔登,加州大学哥伦比亚省19 c,机械与航空航天系,美国加利福尼亚州洛杉矶,美国加利福尼亚州洛杉矶20 D遗Hebei技术大学,公民与运输工程学院,公民与运输工程学院,中国21 E 21 E COORLADO矿业学院美国公司23 G科罗拉多州矿业学院,经济与商业部,美国戈尔登,美国24 25 *通讯作者[电话:(310)825-1346;电子邮件:jassby@ucla.edu] 26†这些作者同样贡献27 281 2 3向膜/水界面进行热能的高盐盐盐水4,Mark Dudley B,Navid Dehdari Ebrahimi c,navide ebrahimi c,navide dehdari ebrahimi c,navid liu a,Hoek A,Nils Tilton B,Tzahi Y. Cath E,Craig S. Turchi F,Michael B. Heeley G,10 Y. Sungtaek Ju C,David Jassby A* 11 12 13 13 14 15加利福尼亚洛杉矶大学(UCLA)科罗拉多州矿业学院,机械工程系,美国加州大学戈尔登,加州大学哥伦比亚省19 c,机械与航空航天系,美国加利福尼亚州洛杉矶,美国加利福尼亚州洛杉矶20 D遗Hebei技术大学,公民与运输工程学院,公民与运输工程学院,中国21 E 21 E COORLADO矿业学院美国公司23 G科罗拉多州矿业学院,经济与商业部,美国戈尔登,美国24 25 *通讯作者[电话:(310)825-1346;电子邮件:jassby@ucla.edu] 26†这些作者同样贡献27 28Hoek A,Nils Tilton B,Tzahi Y. Cath E,Craig S. Turchi F,Michael B. Heeley G,10 Y. Sungtaek Ju C,David Jassby A* 11 12 13 13 14 15加利福尼亚洛杉矶大学(UCLA)科罗拉多州矿业学院,机械工程系,美国加州大学戈尔登,加州大学哥伦比亚省19 c,机械与航空航天系,美国加利福尼亚州洛杉矶,美国加利福尼亚州洛杉矶20 D遗Hebei技术大学,公民与运输工程学院,公民与运输工程学院,中国21 E 21 E COORLADO矿业学院美国公司23 G科罗拉多州矿业学院,经济与商业部,美国戈尔登,美国24 25 *通讯作者[电话:(310)825-1346;电子邮件:jassby@ucla.edu] 26†这些作者同样贡献27 28
尽管新的抗癌药物不断进入市场,但 2021 年全球仍有超过 1000 万人死于癌症 1 ,其中肺癌、胃癌、乳腺癌和胰腺癌是中国和美国癌症相关死亡人数最多的疾病 2,3 。因此,迫切需要改进治疗干预措施。抗体-药物偶联物 (ADC) 是一种新型药物,它利用单克隆抗体对癌细胞上表达的靶抗原的特异性,以实现强效细胞毒性有效载荷的靶向递送。最近,已经开发出针对两种肿瘤相关抗原 (TAA) 的双特异性 ADC (BsADC),以进一步与其他目前可用的 HER3 mAb 一起扩增肿瘤 c。随后将这些 bsAb 通过蛋白酶可裂解的连接体与单甲基金圣草 E (MMAE) 结合,以获得一流的 BsADC 候选药物 DM002。 DM002 候选药物在肺癌、乳腺癌、胃癌和胰腺癌的多种 CDX 和 PDX 模型中表现出强大的抗肿瘤活性;最值得注意的是,DM002 候选药物在 BP0508 肺癌 PDX 模型中的表现优于基准 ADC。总之,这些数据表明 DM002 将成为 HER3 和 MUC1 同时表达肿瘤患者的有前途的治疗药物。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月25日。 https://doi.org/10.1101/2025.01.24.634423 doi:Biorxiv Preprint
“当第一个人拿棍子打倒香蕉时,第二个人立刻就想出了如何借助这根棍子把香蕉拿走。所有真正的新技术都是双重用途的,”Rusnano 董事会主席顾问 Vasily Grudev 开玩笑说。对于高科技公司来说,军方是理想的客户。他们拥有稳定的、通常是大量的资金;他们比平民消费者更有可能需要最好的,而不是最便宜的。从这个意义上说,俄罗斯国防部仅2013年就公布了2.1万亿美元的预算。rub.,令人愉快的“也不例外。”有趣的是,世界各地的军事界对纳米技术的兴趣与日俱增。冷战后的太空竞赛化为泡影,许多有前途的武器因其破坏力而被禁止,而所谓常规武器的总体轮廓自第二次世界大战以来并没有发生根本性的变化——所有这些同样的坦克、飞机、舰艇……就连美国在“常规”武器领域也走上了现代化改进的道路,不断增加战斗力并提高现有装备的战术和技术特性。简而言之,军备竞赛已转向拯救士兵的生命。要做到这一点,就必须让他在战场上停留的时间更短,更安全。因此,无人驾驶车辆、工兵机器人、侦察机器人、减轻和强化装甲的项目蓬勃发展……换句话说,电子和材料科学是纳米技术影响尤其巨大的行业。例如,很明显,寻找新合金不会带来复合材料实验或晶格水平变化所承诺的突破性结果。如今,陶瓷装甲已成功与金属装甲展开竞争。这个市场上有前途的俄罗斯企业是来自新西伯利亚的 NE-VZ-Ceramics 公司。它由 Rusnano 和 NEVZ-Soyuz 控股公司于 2011 年创建。生产装甲陶瓷,用于防弹衣和装备防护。产品已通过俄罗斯及国外测试。其明显的优点是重量轻、防护性能高,但也有“侧面”的优点。陶瓷更难被雷达探测到,并且不太容易被寻的弹药探测到。这为其在