JosipStanešić1,ZlatanMorić2*,Damir Regvart 3,IvanBencarić41,2,3,4系统工程和网络安全系代数代数代数大学Zagreb,克罗地亚; josip.stanesic@algebra.hr(J.S。)zlatan.moric@algebra.hr(Z.M.)damir.regvart@algebra.hr(D.R。)ibencar@algebra.hr(i.b.)摘要:本文研究了数字签名在确保电子通信的有效性,完整性和非纠正方面的关键功能。它通过彻底分析包括公共密钥基础架构(PKI)和加密哈希功能在内的基础技术来研究数字签名在不同部门的技术进步和实际用途。它还考虑了新兴的创新,例如基于区块链的信任模型和抗量子的算法。还解决了重大困难,例如加密缺陷和调节统一。结果表明,必须进行加密技术的持续改进,并将分散的信任机制纳入增强系统的弹性,因为数字签名对于安全的数字交易是必不可少的。结果强调了实施创新的加密解决方案并使国际规则保持一致以解决发展数字生态系统的要求。关键字:区块链,加密算法,网络安全,数字签名,电子交易,PKI,抗量子性密码学,监管框架。1。简介
摘要。,就置换矩阵而言,我们在任何任意尺寸d≥2中介绍了交换门和ISWAP门的明确描述。此外,我们通过引入一个更通用的门XSWAP来统一这些门,该门包括x = 1的交换和ISWAP,x = 1 and x = i(即√ - 1)。较高的XSWAP,例如,D> 2的交换和ISWAP门用作在两个d级别上运行的量子逻辑门。对于d = 2,众所周知,ISWAP与交换不同是通用量子计算的。当x =±1。我们通过置换矩阵对XSWAP的明确表示极大地促进了证明。
船只容量:可用空间与二手实验室空间(足迹)细胞培养实验室在宝贵的空间中通常很紧。他们拥有笨重的设备,例如生物安全柜,冰箱和CO 2孵化器。因此,在提供高可用空间的同时,具有较小的空间的设备最有利于最佳利用宝贵的工作空间。查看co 2 i iCubators,必须考虑几个结构性因素,以评估和比较不同孵化器模型的可用空间与相同的理论体积(例如100-200 L孵化器,最常用于全球)。对于CO 2孵化器具有直接加热,例如细胞植物,只有内部货架系统和水托盘所取的空间必须从理论体积中减去(图1)。与其他加热技术相比,这会导致高可用空间与足迹比。
抽象不可逆的逻辑与统一的量子进化不一致。通过经典测量模拟此类操作可能会导致干扰和高度资源需求。为了克服这些局限性,我们提出了协议,即利用耗散实现不可逆转的门操作所需的无政府进化。使用其他激发态,可能会衰减,我们设计了在最小稳定的希尔伯特空间上执行所需的门操作的有效衰减过程。这些以确定性和自主的方式运行,而无需进行测量。我们考虑了几种经典逻辑操作,例如OR,NOR和XOR Gates。朝着实验实现,我们讨论了量子点中可能的实现。我们的研究表明,不可逆转的逻辑操作可以在逼真的量子系统上有效地执行,并且耗散工程是获得非洲发展的必要工具。拟议的操作扩展了量子工程师的工具箱,并在NISQ算法和Quantum机器学习中具有有希望的应用。
从安全性方面,安全的密钥库是用于保护用于安全通信的加密信息(IEEE 802.1X,HTTPS,Axis设备ID,访问控制密钥等)的批判性建筑块,以免在安全漏洞的情况下进行恶意提取。通过常见标准和/或FIPS 140认证的基于硬件的加密计算模块提供了供电密钥库。根据安全要求,轴设备可以具有一个或多个这样的模块,例如TPM 2.0(受信任的平台模块)或安全元素和/或芯片上的系统(SOC)嵌入式信任的可信执行环境(TEE)。
SAFR SCAN SC50模型提供了采用安全面部身份验证技术最新进步的无摩擦,快速访问控制经验。用户只需要一眼即可快速身份验证。不需要钥匙卡,徽章或引脚代码。与SAFR密钥应用结合使用我们的PKOC移动凭据,以提高安全性。创建一个安全,方便且负担得起的解决方案,您的手机留在口袋里!SAFR扫描易于安装并与各种领先的访问控制平台进行快速部署。在美国设计的具有TAA和NDAA合规性,SAFR扫描是性能和价格的突破。
将打靶特定人源基因的 Cas9 和 sgRNA 转染到 HEK293 细胞。转染所用的质粒 DNA 上含有 表达带双端核定位序列 ( NLS )的 Cas9 及 sgRNA 的表达框,通过 TransIT-X2 (Mirus) 转染 试剂进行转染。转染所用的 Cas9 mRNA 进行了假尿苷和 5- 甲基胞嘧啶修饰且带有双端 核定位序列,使用 transIT-mRNA 转染试剂将 sgRNA 和 mRNA 共转染。 Cas9 RNPs 使用脂质 体 RNAiMAX ( Life Technologies ) 进行反向转染, RNP 的终浓度为 10 nmol 。 Cas9 蛋白上不含 核定位序列。 EnGen Cas9 含有双端核定位序列。编辑效率通过 T7E1 实验进行分析,结果 以修饰百分比进行统计。
将打靶特定人源基因的 Cas9 和 sgRNA 转染到 HEK293 细胞。转染所用的质粒 DNA 上含有 表达带双端核定位序列 ( NLS )的 Cas9 及 sgRNA 的表达框,通过 TransIT-X2 (Mirus) 转染 试剂进行转染。转染所用的 Cas9 mRNA 进行了假尿苷和 5- 甲基胞嘧啶修饰且带有双端 核定位序列,使用 transIT-mRNA 转染试剂将 sgRNA 和 mRNA 共转染。 Cas9 RNPs 使用脂质 体 RNAiMAX ( Life Technologies ) 进行反向转染, RNP 的终浓度为 10 nmol 。 Cas9 蛋白上不含 核定位序列。 EnGen Cas9 含有双端核定位序列。编辑效率通过 T7E1 实验进行分析,结果 以修饰百分比进行统计。
量子点中的自旋量子比特为可扩展量子信息提供了一个颇具吸引力的平台,因为它们与半导体制造兼容 [1, 2]、具有长相干时间 [3],并且能够在超过 1 开尔文的温度下工作 [4, 5]。量子比特逻辑可以通过脉冲交换相互作用 [6–8] 或通过驱动旋转 [9–12] 来实现。在本文中,我们表明,这些方法可以组合起来,在单个设备中执行大量本机双量子比特门,从而减少执行量子算法的操作开销。我们展示了在高于 1 开尔文的温度下,单量子比特旋转以及双量子比特门 CROT、CPHASE 和 SWAP。此外,我们实现了绝热、非绝热和复合序列,以优化量子比特控制保真度和门时间。我们发现可以在 67 纳秒内执行的双量子比特门,通过理论分析实验噪声源,我们预测保真度将超过 99%。这有望使用可嵌入量子集成电路经典电子器件的量子硬件实现容错操作。双量子比特门是量子信息科学的核心,因为它们可用于创建复杂度超出经典模拟范围的纠缠态 [13],并最终可实现实际相关的量子算法 [14]。因此,优化双量子比特门是所有量子比特平台的核心方面 [15]。在量子点系统中,可以利用相邻量子点中自旋量子比特之间的交换相互作用自然地实现双量子比特门 [1]。当交换能量远大于量子比特的塞曼能量差时,脉冲相互作用会驱动 SWAP 振荡 [1, 6],而当塞曼能量差远大于交换能量时,则会导致 CPHASE 振荡 [16]。还需要实现单量子比特门来访问完整的两量子比特希尔伯特空间,这需要量子比特之间的可区分性。这通常是通过自旋轨道耦合 [3] 或集成纳米磁体 [17, 18] 来实现的,从而产生显著的塞曼能量差。在这种情况下实现高保真 SWAP 门需要极大的