潘宁阱已用于对数百个离子进行量子模拟和传感,并提供了一种扩大捕获离子量子平台的有希望的途径,因为它能够在二维和三维晶体中捕获和控制数百或数千个离子。在潘宁阱和更常见的射频保罗阱中,激光通常用于驱动多量子比特纠缠操作。这些操作中退相干的主要来源是非共振自发辐射。虽然许多捕获离子量子计算机或模拟器使用时钟量子比特,但其他系统(尤其是具有高磁场的系统,如潘宁阱)依赖于塞曼量子比特,这需要对这种退相干进行更复杂的计算。因此,我们从理论上研究了自发辐射对在高磁场中使用捕获离子基态塞曼量子比特执行的量子门的影响。具体来说,我们考虑了两种类型的门——光移位( ˆ σ zi ˆ σ zj )门和 Mølmer-Sørensen( ˆ σ xi ˆ σ xj )门——它们的激光束近似垂直于磁场(量化轴),并比较了每种门中的退相干误差。在每种门类型中,我们还比较了与驱动门所用的激光束的失谐、偏振和所需强度有关的不同工作点。我们表明,这两种门在高磁场下的最佳工作条件下都能具有相似的性能,并研究了各种工作点的实验可行性。通过检查每个门的磁场依赖性,我们证明,当 P 态精细结构分裂与塞曼分裂相比较大时,Mølmer-Sørensen 门的理论性能明显优于光移门。此外,对于光移门,我们对高场下可实现的保真度与最先进的双量子比特离子阱量子门的保真度进行了近似比较。我们表明,就自发辐射而言,我们当前配置可实现的保真度比最好的低场门大约高一个数量级,但我们也讨论了几种替代配置,其潜在错误率与最先进的离子阱门相当。
我们描述了一种灵活的微波合成系统,该系统由一个超低相位噪声低温蓝宝石振荡器 (CSO) 设计,可用作镱离子 (Yb+) 量子比特的主时钟。我们报告称,使用该合成系统,量子比特相干时间从 0.9 秒提高到 8.7 秒,提高了 10 倍,单量子比特量子门的误差为 1.6e-6。使用滤波函数方法 [1],我们发现证据表明,0.9 秒的宝贵相干性受到精密级商用现成微波合成器 [1] 的相位噪声的限制。此外,我们还利用微波合成系统的灵活性来演示贝叶斯学习算法,该算法可以自主设计信息优化的控制脉冲来识别和校准定量动力学模型,以表征囚禁离子系统。我们通过实验证明,新算法在少量样本的情况下超过了传统校准方法的精度 [2]。
我们建议使用二维 Penning 阱阵列作为量子模拟和量子计算的可扩展平台,以捕获原子离子。这种方法涉及将定义静态电四极子位置的微结构电极阵列放置在磁场中,每个位置捕获单个离子并通过库仑相互作用与相邻离子耦合。我们求解此类阵列中离子运动的正常模式,并推导出即使在存在陷阱缺陷的情况下也能实现稳定运动的广义多离子不变定理。我们使用这些技术来研究在固定离子晶格中进行量子模拟和量子计算的可行性。在均匀阵列中,我们表明可以实现足够密集的阵列,轴向、磁控管和回旋加速器运动表现出离子间偶极耦合,其速率明显高于预期的退相干。通过添加激光场,这些可以实现可调范围的相互作用自旋汉密尔顿量。我们还展示了局部电位控制如何隔离固定阵列中的少量离子,并可用于实现高保真门。使用静态捕获场意味着我们的方法不受系统尺寸增加时的功率要求限制,从而消除了标准射频陷阱中存在的重大缩放挑战。因此,这里提供的架构和方法似乎为捕获离子量子计算开辟了一条道路,以实现容错规模的设备。
量子比特相干时间是离子阱量子网络节点中的关键参数。然而,用于将量子比特编码为离子的状态之间的能量差波动可能是退相干的重要来源。为了增加任意单量子比特状态的相干时间,可以将状态编码为由两个物理量子比特的联合状态形成的无退相干子空间 (DFS),在我们的例子中,这两个物理量子比特是两个共同捕获的离子。因此,离子量子比特的相干性被动地受到保护,免受对两个物理量子比特产生同等影响的波动的影响。这篇硕士论文介绍了在我们的实验装置中实现无退相干量子存储器的实验结果。为了实现量子存储器,需要一个受控非门 (CNOT)。为了实现 CNOT 门,我们实验装置中的本机门被扩展以完成一组通用量子门。在这篇硕士论文之前,多离子串和纠缠门内的离子量子比特全局旋转已经可用。为了完成一组通用的量子门,将单离子聚焦相位旋转添加到本机门中。然后使用 CNOT 门从双量子比特 DFS 存储和检索单量子比特状态。在 DFS 中存储和检索量子比特的过程完全由量子过程层析成像表征,存储时间为 500 毫秒,过程保真度为 94(6)%。与我们之前在离子阱系统中实现的相比,使用 DFS 编码可以将量子比特的相干时间提高至少一个数量级。
量子计算机有望在解决一系列计算问题时比传统计算机实现显著的加速。线性 Paul 阱中保持的离子链是构建此类量子计算机的有前途的平台,因为它们具有较长的相干时间和较高的控制质量。本文,我们报告了使用射频 (rf) 阱中的 88 Sr + 离子构建小型五量子比特通用量子计算机的情况。所有基本操作(包括初始化、量子逻辑操作和读出)均以高保真度执行。使用窄线宽激光实现的选择性双量子比特和单量子比特门组成通用门组,允许在量子寄存器上实现任何幺正。我们回顾了主要的实验工具,并详细描述了计算机的独特方面:使用强大的纠缠门和通过电子倍增 CCD 相机采集开发量子相干反馈系统。后者对于在未来的实验中执行量子纠错协议是必要的。
更独特的是,我们还对 QSCOUT 中的双量子比特门进行了重要的参数化。离子阱系统中的自然双量子比特门称为 Mølmer-Sørensen (MS) 门,它是 Bloch 超球面上的 XX 型相互作用。标准捕获离子门组(例如 IonQ 或 Quantinuum 的商业测试台使用的门组)提供具有固定旋转角 π/2 的 XX 或 ZZ 相互作用。对于 QSCOUT,我们扩展了该产品,以允许用户选择参数化的 MS 门,这意味着他们能够定义该相互作用的相位和旋转角度。通过这样做,我们提供了一组更完整的门,以更有效地实现他们所需的算法。这些参数化的双量子比特门是吸引我们第一轮一半用户的关键功能。在第一轮中,我们改进了实现这些门的技术,并计划在 QSCOUT 继续进行时提供更多的可定制性和参数化。
防守球员(演员 4)快速移动以击球和阻挡球,而其他球员(例如演员 2 和演员 3)则站着不动。因此,最好先对时间动态进行建模。
摘要 - 尽管具有巨大的潜力,但仍不清楚量子计算如何扩展以满足其最强大的应用程序的要求。除其他问题外,可以将可以集成到单个芯片中的量子位数量很大。多核架构是解锁量子处理器可扩展性的公司候选者。尽管如此,量子通信的脆弱性和复杂性使这是一个具有挑战性的方法。全面的设计应意味着整合量子计算机体系结构中的通信堆栈。在本文中,我们通过在设计核心中纠缠沟通和计算可能有助于解决开放挑战来解释这种愿景。我们还总结了我们应用结构化设计方法支持该愿景的第一个结果。通过我们的工作,我们希望通过设计指南做出贡献,这些指南可能有助于释放量子计算的潜力。
由于其优异的介电性能,玻璃可以作为表面离子阱制造中石英或蓝宝石的低成本替代材料。与高电阻率(5000 Ω·cm)硅衬底(20 MHz 时的典型损耗角正切为 1.5)相比[24],本文采用的玻璃衬底(Corning SGW 8.5)在 5 GHz 时的损耗角正切为 0.025,体积电阻率为 10 10 Ω·cm(数据可从产品信息表获得)。这省去了硅阱所需的射频屏蔽层和绝缘层,并使制造程序变得更加简单。此外,透明玻璃(波长为 300 至 2400 nm 的透射率为 90%)可以使光的传输和收集更加灵活,例如,通过在下面放置光纤和/或光电探测器。 [25]与其他介电材料(如蓝宝石和石英)相比,玻璃不仅成本低,而且可制造性更先进,可以实现高可靠性的玻璃通孔、[26,27]阳极键合、[28]
95 岁的罗纳德·R·(罗恩)·塔斯克于 2023 年 4 月 19 日在多伦多他住了 50 年的家附近安详离世,他度过了漫长而富有成效的一生。2003 年,他深爱的妻子玛丽·M·塔斯克(本姓克雷格)先他而去。罗恩头脑早熟,16 岁时凭借古典文学奖学金进入多伦多大学,在那里他学习荣誉科学(1948 年获得副州长奖章)。这让他进入了胰岛素共同发现者查尔斯·贝斯特博士的实验室。贝斯特博士和罗恩的母亲建议他学习医学,他在那里获得了 1950 年的病理学萨丁顿奖章和 1952 年的科迪银奖。罗恩在 E. Harry Botterell 博士的指导下学习神经外科和神经生理学,并在美国和欧洲担任博士后麦克劳克林旅行研究员(1959-1961 年)。罗恩是一位受过传统训练的科学家,擅长早期现代医学的模拟方法。他通过在手术室中采用数字技术和仪器,并将自己在神经生理学和立体定向神经外科方面的训练融合在一起,开创了临床神经生理学。罗恩于 1961 年加入多伦多总医院 (TGH) 的神经外科部门,并被授予马克尔学者 (1961-1966)。他走遍世界各地培训立体定向和功能性神经外科领域的神经外科医生,后来于 1979 年至 1988 年成为 TGH 的神经外科主任。罗恩在多伦多大学医学院任教 40 多年,于 1978 年成为正教授,并于 2005 年被授予名誉教授 - 神经外科头衔,同时还获得加拿大勋章。 1993 年,Ron 荣获世界立体定向和功能性神经外科学会 (WSSFN) 的 Spiegel & Wycis 奖章。1999 年,多伦多大学外科学系设立了 RR Tasker 功能性神经外科讲席教授席位,以表彰他在这一医学领域的诸多贡献。Ron 在临床研究领域享誉全球,是一位出色的外科医生、教师、导师和职业榜样,他思路清晰、说话直白,备受推崇。Ron 的职业诚实正直令人无可争辩,他是一位温和、有礼貌、平易近人的老师。作为一名父亲,Ron 在树林里最为放松。他身后留下了孩子 Moira、James(Sandra Poole)、Ronald(Bonnie Crook)和 Alison,四个孙辈,妹妹 Elizabeth White(娘家姓 Tasker)和嫂子 Sheila Waengler(娘家姓 Craig)。