寻找超对称粒子是大型强子对撞机 (LHC) 的主要目标之一。超对称顶部 (停止) 搜索在这方面发挥着非常重要的作用,但 LHC 下一个高光度阶段将达到前所未有的碰撞率,这对任何新信号与标准模型背景的分离提出了新的挑战。量子计算技术提供的大规模并行性可以为这个问题提供有效的解决方案。在本文中,我们展示了缩放量子退火机器学习方法的一种新应用,用于对停止信号与背景进行分类,并在量子退火机中实现它。我们表明,这种方法与使用主成分分析对数据进行预处理相结合,可以产生比传统多元方法更好的结果。
高能对撞机中基本粒子量子特性的测试开始出现。顶夸克和反顶夸克系统中的纠缠和贝尔不等式违反尤其令人感兴趣,因为顶夸克是经历级联衰变的不稳定粒子。我们争论顶夸克和反顶夸克在不同衰变阶段的空间分离标准。我们考虑了三个不同情况下的因果分离:顶夸克衰变、W 玻色子衰变以及轻子/喷流与宏观仪器接触时。我们表明,当要求顶夸克和 W 玻色子都在空间间隔内衰变时,事件的空间分数最小。对于通常需要贝尔不等式违反的高不变质量,这几乎与顶夸克衰变要求相同。我们还包括一个选项,用于将顶夸克衰变中的 b 夸克的角度相关性用于自旋相关性测量。我们要求顶夸克和 b 强子衰变都是空间分离的。再次,我们发现在高不变质量下,它几乎与顶夸克和反顶夸克之间的空间分离要求相同。我们为我们提出的标准提供了数值。如果满足这样的标准,则保证系统不存在因果关系。
“当第一个人拿棍子打倒香蕉时,第二个人立刻就想出了如何借助这根棍子把香蕉拿走。所有真正的新技术都是双重用途的,”Rusnano 董事会主席顾问 Vasily Grudev 开玩笑说。对于高科技公司来说,军方是理想的客户。他们拥有稳定的、通常是大量的资金;他们比平民消费者更有可能需要最好的,而不是最便宜的。从这个意义上说,俄罗斯国防部仅2013年就公布了2.1万亿美元的预算。rub.,令人愉快的“也不例外。”有趣的是,世界各地的军事界对纳米技术的兴趣与日俱增。冷战后的太空竞赛化为泡影,许多有前途的武器因其破坏力而被禁止,而所谓常规武器的总体轮廓自第二次世界大战以来并没有发生根本性的变化——所有这些同样的坦克、飞机、舰艇……就连美国在“常规”武器领域也走上了现代化改进的道路,不断增加战斗力并提高现有装备的战术和技术特性。简而言之,军备竞赛已转向拯救士兵的生命。要做到这一点,就必须让他在战场上停留的时间更短,更安全。因此,无人驾驶车辆、工兵机器人、侦察机器人、减轻和强化装甲的项目蓬勃发展……换句话说,电子和材料科学是纳米技术影响尤其巨大的行业。例如,很明显,寻找新合金不会带来复合材料实验或晶格水平变化所承诺的突破性结果。如今,陶瓷装甲已成功与金属装甲展开竞争。这个市场上有前途的俄罗斯企业是来自新西伯利亚的 NE-VZ-Ceramics 公司。它由 Rusnano 和 NEVZ-Soyuz 控股公司于 2011 年创建。生产装甲陶瓷,用于防弹衣和装备防护。产品已通过俄罗斯及国外测试。其明显的优点是重量轻、防护性能高,但也有“侧面”的优点。陶瓷更难被雷达探测到,并且不太容易被寻的弹药探测到。这为其在
本评论探讨了双糖尿病的病理生理学,临床意义和管理。肥胖,久坐的生活方式和遗传易感性的越来越多的患病率模糊了1型和2型糖尿病之间的差异,从而导致诊断性和治疗性挑战。双糖尿病均表现出两种糖尿病类型的重叠症状,因此准确的诊断至关重要。生物标志物,例如C肽水平,自身抗体测试和胰岛素抵抗标记,有助于将双糖尿病与经典糖尿病亚型区分开。早期干预是必要的,因为这种病的微血管和大血管后果的风险升高,例如视网膜病变,肾病和心血管疾病。有效管理整合了药理学和生活方式的方法。二甲双胍,葡萄糖共转运蛋白2(SGLT2)抑制剂,胰高血糖素样肽-1(GLP-1)受体激动剂和胰岛素治疗调整所有促进血糖控制和代谢结果。此外,结构化运动,饮食修饰和体重管理对于降低胰岛素抵抗和保留β细胞活性至关重要。精密医学,人工智能(AI)驱动的医疗保健和连续葡萄糖监测(CGM)的潜力为个性化治疗策略提供了有希望的进步。未来的研究应集中于有针对性的免疫疗法,基因分析和精致的临床指南,以改善早期检测和个性化治疗,并具有长期结局。审查强调需要采用多学科方法来管理双重糖尿病,确保早期诊断,优化治疗和改善代谢健康以减轻长期并发症。
伊朗Semnan University电气和计算机工程学院电气工程系。b卫生信息管理和技术系,伊朗喀山喀山医学科学学院,伊朗喀山。C喀山医学大学伊朗喀山喀山医学大学的健康信息管理研究中心。D研究所Digihealth,Neu-ULM应用科学大学,德国Neu-Ulm。orcid ID:A。M. Nickfarjam https://orcid.org/0000-0000-0003-3782-3038摘要。我们提出了用于分割和分类脑肿瘤的U-NET体系结构的修改版本,从而引入了向下采样和向上采样之间的另一个输出。我们建议的体系结构利用了两个输出,在分割输出旁边添加了分类输出。中心想法是在应用U-NET的上采样操作之前使用完全连接的图层对每个图像进行分类。这是通过利用在下采样过程中提取的功能并将其与完全连接的层相结合的分类来实现的。之后,通过U-NET的上采样过程生成分段图像。初始测试对骰子系数,准确性和敏感性分别为80.83%,99.34%和77.39%的可比模型显示了竞争性结果。这些测试是在2005年至2010年的中国广州Nanfang医院,中国广州Nanfang医院和中国天津医科大学的综合医院的数据集上进行的,其中包含3064个脑肿瘤的MRI图像。
摘要:微管和含有特殊微管的结构由微管蛋白组装而成,微管蛋白是真核生物必需蛋白的一个古老超家族。在这里,我们使用生物信息学方法来分析来自顶复门的生物体中微管蛋白的特征。顶复门是原生动物寄生虫,可引起多种人类和动物传染病。单个物种分别含有 1 到 4 个 α - 和 β - 微管蛋白同型基因。这些基因可能指定高度相似的蛋白质,表明功能冗余,或表现出与特殊作用相一致的关键差异。一些(但不是全部)顶复门含有 δ - 和 ε - 微管蛋白基因,这些基因存在于构建含有附属物的基体的生物体中。顶复门 δ - 和 ε - 微管蛋白的关键作用可能仅限于微配子,这与单个发育阶段对鞭毛的有限要求相一致。其他顶复门的序列分化或 δ - 和 ε - 微管蛋白基因的丢失似乎与中心粒、基体和轴丝的需求减少有关。最后,由于纺锤体微管和鞭毛结构已被提议作为抗寄生虫疗法和传播阻断策略的目标,我们将在基于微管蛋白的结构和微管蛋白超家族特性的背景下讨论这些想法。
1.1 结构要求 1.1.1 本部分适用于2006年4月1日或以后至2015年7月1日之前入级本社并签订建造合同的船舶。注:“签订建造合同”是指未来船东与造船厂签订船舶建造合同的日期。有关“签订建造合同”日期的更多详细信息,请参阅IACS程序要求(PR)第29号。1.1.2 本部分适用于长度L CSR-B为90m及以上的全球无限制航行的单舷侧和双舷侧散货船的船体结构。散货船是指通常采用单甲板、双底、底边舱和顶边舱建造,在货物长度区域采用单舷或双舷侧结构,主要用于运输散装干货的远洋自航船舶,不包括矿砂船和兼用船。本部分涵盖至少一个货舱采用底边舱和顶边舱建造的混合型散货船。未采用底边舱和/或顶边舱建造的货舱中构件的结构强度应符合本部分定义的强度标准。1.1.3 本部分包含适用于具有下列特性的所有类型散货船的 IACS 对船体尺寸、布置、焊接、结构细节、材料和设备的要求: ・ L CSR-B < 350 m ・ L CSR-B / B > 5 ・ B / D < 2.5 ・ C B ³ 0.6 1.1.4