通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,
摘要:色素性视网膜炎11是一种不可治疗的,主要遗传的视网膜疾病,由MRNA加工因子31 PRPF31中的杂合突变引起。PRPF31的表达水平与受影响家庭的不完全渗透有关;具有较高PRPF31表达的突变载体可以无症状。当前的研究探讨了反义寡核苷酸外显子跳过策略,以治疗由PRPF31外显子12中截断突变引起的RP11,因为它似乎没有编码PRPF31蛋白质功能所必需的任何域。细胞源自携带PRPF31 1205C>的患者,研究了废话突变。由1205C> A编码的PRPF31转录本由于胡说八道介导的mRNA衰变而无法检测到,相对于健康的供体细胞,PRPF31 mRNA降低了46%。反义寡核苷酸诱导的外显子12的跳过,拯救了开放式阅读框,因此在RP11患者成纤维细胞中,prpf31 mRNA上调为1.7倍。PRPF31上调的水平达到了具有相同突变的非探针载体家族成员推断出的预测的表达阈值。这项研究表明,诱导PRPF31同工型的PRPF31表达和核易位能力的保留增加。未来的研究应评估诱导的PRPF31蛋白在视网膜细胞中MRNA剪接上的功能,以验证可依延RP11引起的突变的治疗方法。
- 图1。根据完整的母体药物结构(包括TAG修饰,寡核苷酸序列)自动生成MS搜索文库(在siRNA序列的情况下包含感官和反义链),核酸酶动作和预定义的代谢反应,从而实现全面的代谢概况。
Ago2,argonaute 2;又名;ASO,反义寡核苷酸;mRNA,信使 RNA;RISC,RNA 诱导沉默复合物;RNase H1,核糖核酸酶 H1;siRNA,小干扰 RNA。图片改编自:Ginsburg 等人 (2017),基因组和精准医学基础,翻译和实施。爱思唯尔
实现寡核苷酸的特定目标递送,无论是疾病部位,特定组织还是器官,对于增强治疗精度并最大程度地降低了脱靶效应至关重要。通过化学修饰的寡核苷酸和纳米颗粒等先进方法促进了这种精确的递送,对提高治疗效果具有巨大的希望。寡核苷酸和基因,尤其是mRNA,siRNA,反义RNA和CRISPR-CAS9系统,是传统治疗方式的替代方案。本期特刊旨在汇编研究文章和审查以癌症为癌症,靶向组织和器官靶向寡核苷酸的传递。特别重点放在修饰的mRNA,siRNA,反义RNA,CRISPR-CAS9,microRNA,质粒DNA和DNA,以及涉及纳米颗粒,树枝状聚合物和LNP的有效递送系统。了解寡核苷酸的结构和化学修饰,再加上成功的包装系统,对于在这个迅速前进的领域中成功的基因治疗是至关重要的。我们期待收到您的提交。
APOC3 载脂蛋白 C-3/脂蛋白脂肪酶活性 Z ,血浆甘油三酯 \ / CAD 风险增加 反义 APOC3 抑制剂 (Volanesorsen) 可导致甘油三酯剂量依赖性降低 31% - 71%,有效降低家族性乳糜微粒血症综合征的甘油三酯
背景:这项研究的目的是为Oxaliptin(OXA)(OXA)(OXA)和MDC1(MDC1-AS)的反义LNCRNA编制新型的磁热阳离子脂质体药物载体,以使其对宫颈癌细胞进行,并评估该药物携带者及其抗抑制剂及其抗抑制剂对颈椎效应的效率。方法:使用薄膜水合方法制备热敏磁阳离子脂质体。将OXA和MDC1-AS载体加载到代码传递系统中,并确定体外OXA热敏释放活性,MDC1-AS调节MDC1的效率,体外细胞毒性和体内抗肿瘤活性。结果:代码传递系统具有理想的目标递送功效,Oxa Thermosensi tive释放和MDC1-AS调节MDC1。与单一药物递送相比,OXA和MDC1-AS的代码分子增强了体外和体内宫颈癌细胞生长的抑制。结论:OXA和MDC1-As磁热敏感性脂质体药物载体的新型代码分子可用于宫颈癌的联合化学疗法和基因治疗。关键字:磁热敏性阳离子脂质体,奥沙利铂,MDC1的反义lncRNA,靶向治疗,宫颈癌
ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ــــــــــــــــــــــــــــــــــــــــــــــــــ 摘要:基于 RNA 的疗法已成为调节基因/蛋白质表达和基因编辑的最有效治疗选择之一,具有治疗神经退行性疾病的潜力。然而,通过全身途径将核酸输送到中枢神经系统 (CNS) 仍然是一个主要障碍。为了克服这个缺陷,本综述重点介绍基于寡核苷酸的新策略,包括脂质体、碳纳米管、量子点、固体脂质纳米粒子、纳米脂质载体、聚合物纳米粒子、介孔二氧化硅、树枝状聚合物、适体、纳米抗体等。这些策略旨在通过不同的途径和跨血脑屏障的运输机制来克服这些障碍。正在进行的临床前和临床研究正在评估反义寡核苷酸 ASO 在多种遗传和获得性神经系统疾病中的安全性和有效性。当前的审查提供了有关 ASO 的新方法、临床前、临床证据和给药途径的最新信息。还描述了 FDA 批准的 ASO 在神经系统疾病中的给药情况。目前关于 ASO 在脑部疾病中的安全性和有效性的证据将有助于确定更广泛核酸的机会并加速这些创新疗法的临床转化。关键词:反义寡核苷酸、神经退行性、小干扰 RNA、微小 RNA、血脑屏障、治疗反应。
一种称为Gapmer反义寡核苷酸(ASO)的专门治疗方法旨在专门靶向和分解故障的核糖核酸(RNA),同时保持正常基因功能完整。使用这种RNA疗法导致在KCNA2基因中编码的有问题的钾通道蛋白中显着降低,这有助于恢复正常的钾流量并减少与癫痫有关的过度神经元活性。