在太阳同步重复地面轨道上轨道太阳能反射器的星座原则上可以在日落之后或日出之前照亮大型陆地太阳能发电厂。这将增加每天的小时数,在此期间,太阳能发电厂可以向电网传递清洁能源。为了开发和部署如此大规模的轨内基础设施,将需要许多技术演示来降低技术并建立投资信心。本文考虑了轨道太阳能反射器的潜在技术演示活动,从实验室规模的测试到高海拔气球飞行和次级尺度轨道内演示。确定了轨道太阳能反射器的关键技术要求,并评估了每个演示步骤的效用。然后提出了一项综合技术开发,技术演示和投资路线图。
尽管太阳能行业的增长,但其对能源提供的利用仍在很大程度上仅限于白天。先前的研究考虑了将储能(ES)与太阳能农场的整合,以在白天使用太阳能和在其他小时内排出。另外,太空技术的最新进步使轨道太阳能反射器(OSRS)的部署开辟了以环保方式提供清洁能源服务的新景色。OSR可以在一天中的关键时刻提供从空间到地球上确定的大型太阳能农场的额外照明,从而增强能源发电并延长太阳能农场的生产时间。本文使用OSR调查了使用OSR来提高太阳能农场的产出,以替代ES的能源套利,并研究了投资在OSR或ES中的短期(年度)盈利能力和长期(寿命)经济可行性作为太阳能PV Farm的整合选项。研究调查了有关两种技术作为在不同市场条件下的太阳能农场的整合选择的不同案例,涉及小时电价变化。获得的结果表明,与OSR一致时,太阳能农场将获得更好的经济价值。
摘要。我们解决了平面波在由DC横向磁场控制的铁氧体1D磁磁晶体上散射的问题。基于Floquet-Bloch理论的混合边界条件的山山方程溶液以分析形式获得。明确发现色散方程及其根。根据铁氧体层的材料参数,对结构的分散性质进行分析。确定具有有限周期数量的陀螺仪的传输和反射系数。考虑了两个特征情况:旋转层有效渗透性的正值和负值。在晶体时期确定电磁场组件的空间分布的表达。结果提供了对具有控制旋转元素的多层介质中电磁波传播行为的更深入的理解。此外,获得的分析表达式简化了这种复杂介质中波过程的分析。
跟踪光伏农场时,主要约束要求 z 轴指向,以便反射光引导至目标 不跟踪时,移动到空闲阶段,反射器边缘朝向太阳,以防止杂散光。主要约束是 x 轴朝向太阳。 目前正在进行刚性和柔性体的指向误差分析 继续研究由于指向误差导致的能量传输损失(IAC 见!)
商业海洋活动推动了对海底设备定位和重新定位技术解决方案的需求。传统解决方案通常涉及通过对多个发射器进行距离测量来进行定位,但这些有源设备包含需要定期维护的电池。因此,使用被动声纳反射器作为导航和定位辅助设备是可取的。其实用性的基础是它们反射声纳能量的能力,以目标强度量化。以 SonarBell 为代表的商业被动反射器技术的最新进展使其成为水下定位的实用技术。在本研究中,介绍了被动声纳反射器和 SonarBell 的声学特性。基本声纳方程分析的结果和水箱中宽带校准测量的目标强度估计了使用 SonarBell 在定位系统中可以实现的性能。两次现场测试的记录表明 SonarBell 正在实际使用中。
商业海上活动推动了对海底设备定位和重新安置技术解决方案的需求。传统解决方案通常涉及通过对多个发射器进行距离测量来进行定位,但这些有源设备包含需要定期维护的电池。因此,使用被动声纳反射器作为导航和定位辅助设备是可取的。其实用性的根本在于它们反射声纳能量(量化为目标强度)的能力。以 SonarBell 为代表的商用被动反射器技术的最新进展使其成为一种实用的水下定位技术。在本文中,介绍了被动声纳反射器和 SonarBell 的声学特性。基本声纳方程分析的结果和水箱中宽带校准测量的目标强度估计了使用 SonarBell 在定位系统中可以实现的性能。两次现场测试的记录表明 SonarBell 正在得到实际应用。
nitride(Si 3 N 4)已成为综合光子学的广泛利用材料[1]。在近红外且可见的范围中,其低损失和转移良好的新兴应用,例如生物传感[2],电信[3]和量子计算[4]。此外,Si 3 N 4与互补的金属 - 氧化物 - 氧化型(CMOS)织物兼容,从而实现了大规模的制造。然而,由于模式区域之间的错误匹配,高索引对比度SI 3 N 4波导和光纤维之间的光偶联仍然具有挑战性。光栅耦合器通常用于促进片上波导和光纤维之间光的垂直耦合。具有蚀刻到引导层的周期性结构,在波导中传播的光可以向上衍射朝向光学纤维,反之亦然。与使用边缘耦合器的水平耦合相比,垂直
摘要 — 虽然基于超表面的智能反射面 (IRS) 本身就是未来几代无线连接的重要新兴技术,但大规模部署这些表面的计划引发了它们与其他需要大规模扩散的新兴技术的集成问题。这个集成问题以及未来通信系统作为公共卫生宝贵组成部分的愿景激发了我们提出智能反射器-病毒检测器 (IR-VD) 的新概念。在这个新方案中,我们建议部署智能反射器,并在反射表面砖之间放置基于受体的病毒检测器条带。我们提出的方法通过轻弹反射光束的角度来编码病毒信息,使用光束偏差之间的时间变化来表示消息。这些信息包括病毒的存在、其位置和负载大小。本文通过模拟演示了基于结合到 IR-VD 上的不同数量病毒的编码过程。
§ D. Hampf,“SpaceWatchGL 观点:黑暗海洋中的一盏明灯:为什么所有太空物体都应该有反射器”,https://spacewatch.global/2022/07/spacewatchgl-opinion-a-beacon-of-light-in-the-sea-of-darkness-why-all- space-objects-should-have-retroreflectors/
绕行太阳能反射器(OSR)是平坦,薄且轻巧的反射结构,提议通过在黎明/黄昏和夜间在本地和夜间在本地照亮大型陆地太阳能发电厂,以增强陆地太阳能的产生。将OSR掺入陆生能系统中可能会抵消陆地太阳能的日光限制。然而,由于轨道通行的持续时间短,并且由于较大的倾斜范围而导致反射太阳能的低密度,传递到地球表面的太阳能数量保持较低。为了补偿这些内容,本文提出了一个低地球轨道中多个反射器的星座,以扩大传递的能量量的可扩展性。在终结器区域的1000 km高度的圆形近极轨道在沃克型星座中考虑进行初步分析。从简化的方法开始,首先通过引入相集参数来修改描述反射器分布的Walker星座方程,以确保对太阳能农场的重复传递几何形状。这种方法允许单个地面轨道优化来定义星座,该星座是由单个轨道的遗传算法和两个反射器进行的,其目标函数定义为每天提供的总能量,并将其定义为地球周围现有和假设的太阳能项目。当考虑到许多反射器的全尺寸星座时,在全球陆地太阳能产生的更广泛背景下,传递的太阳能数量是很大的。