韩国从上世纪 80 年代开始,在核电站建设项目的各个方面启动技术自主计划,并通过 OPR1000 设计和建设项目实现了核技术自主。目前(截至 2010 年 8 月),共有 8 台 OPR1000 机组运行良好,最新版本的 OPR1000 机组正在建设中,并将于 2010 年至 2012 年投入商业运营。OPR1000 机组的重复建设和后续运行,造就了具有国际竞争力的建设技术和出色的工厂运行和维护能力。基于通过 OPR1000 的设计、建设、运行和维护积累的自主技术和经验,韩国于 1992 年启动了 APR1400 开发项目,并于 2002 年完成了其标准设计。
当政府图纸、规格或其他数据用于与政府明确相关的采购无关的任何目的时,美国政府不承担任何责任或义务。政府可能已经制定或以任何方式提供上述图纸、规格或其他数据,但不应被视为
图1。可以通过四个不同的步骤来描述 可以描述:(i)CO 2吸收:烟气中的CO 2与过程水和CO 2接触,CO 2溶解在过程水中,(ii)CACO 3溶解:水性CO 2与CACO 3反应,并在caco 3中反应,并在hco 3 -CO中产生hco 3 -ii temii temii temii stutation ii temii tem ii hco 3 -hco 3 -hco 3 -hco 3---碱化步骤(在缓冲锥中):将额外的碱度添加到工艺水中(e,g。 通过石灰添加),直到多余的CO 2完全缓冲为止,(iv)重新平衡步骤:重新曝光105 时可以描述:(i)CO 2吸收:烟气中的CO 2与过程水和CO 2接触,CO 2溶解在过程水中,(ii)CACO 3溶解:水性CO 2与CACO 3反应,并在caco 3中反应,并在hco 3 -CO中产生hco 3 -ii temii temii temii stutation ii temii tem ii hco 3 -hco 3 -hco 3 -hco 3---碱化步骤(在缓冲锥中):将额外的碱度添加到工艺水中(e,g。 通过石灰添加),直到多余的CO 2完全缓冲为止,(iv)重新平衡步骤:重新曝光105 时可以描述:(i)CO 2吸收:烟气中的CO 2与过程水和CO 2接触,CO 2溶解在过程水中,(ii)CACO 3溶解:水性CO 2与CACO 3反应,并在caco 3中反应,并在hco 3 -CO中产生hco 3 -ii temii temii temii stutation ii temii tem ii hco 3 -hco 3 -hco 3 -hco 3---碱化步骤(在缓冲锥中):将额外的碱度添加到工艺水中(e,g。通过石灰添加),直到多余的CO 2完全缓冲为止,(iv)重新平衡步骤:重新曝光105
在法国核研究所的框架下,CEA 与 AREVA 和 EDF 合作开发了铬涂层,旨在保护当前的锆合金核燃料包层材料免受高温蒸汽氧化(尤其是在意外条件下)的影响。本文重点介绍了锆合金-4 和基材上的铬涂层包层的最新研究结果。AREVA 发表了一篇补充论文 [1]。图中显示了铬涂层的典型制造微观结构。在 415°C(蒸汽,100 巴)下对未涂层参考材料和铬涂层锆合金-4 基样品进行了初步高压釜氧化试验,结果显示上一代 Cr 涂层的制备结果非常令人鼓舞。此外,还介绍了在蒸汽中高温 (HT) 氧化后获得的结果。结果表明,与传统的未涂层材料相比,迄今为止开发的铬涂层可以显著改善高温氧化后的包层机械性能(即延展性和强度)。因此,开发的铬涂层为冷却剂缺失事故(LOCA)提供了显著的额外裕度,并且在一定程度上为超越 LOCA 的条件提供了显著的额外裕度。
建造首个高级核反应堆不仅需要新的反应器设计和分析方法,还需要为新组件和基础设施提供链条,以生产新的核燃料。由于所有能源开发的成本的通货膨胀2,3,4以及大型项目的初步成本估算的挑战,这些项目的总预期成本正在增加。将需要额外的私人投资和联邦资金成功完成两个示范反应堆。作为国会和私营部门考虑额外的资金和投资,重要的是要记住ARDP的案例并认识到迄今为止取得的进展。ARDP通过展示新的商业用例,为未来的项目创造好处,加速美国高级反应堆许可,吸引数十亿美元的私人资本中的数十亿美元以及创造高质量的工作,从而为新的高级核反应堆商业化创造了途径。
这个机会不限于发电资产:电力传输和分销网络通过升级现有基础架构提供相似的收益水平。投资电力系统的骨干电网将翻一番,直到2030年,并超过全球可再生能源投资。 这是我们的最佳位置,世界上95%以上的电力传输公用事业公司配备了Ge Vernova电气化系统细分市场的组件。 例如,部署我们的灵活交流传输系统解决方案(事实),为电网操作员提供了增强现有长距离交流传输线的可控性,稳定性和功率传输的能力,而不是建立昂贵的新的。投资电力系统的骨干电网将翻一番,直到2030年,并超过全球可再生能源投资。这是我们的最佳位置,世界上95%以上的电力传输公用事业公司配备了Ge Vernova电气化系统细分市场的组件。例如,部署我们的灵活交流传输系统解决方案(事实),为电网操作员提供了增强现有长距离交流传输线的可控性,稳定性和功率传输的能力,而不是建立昂贵的新的。
匹兹堡大学通过基于扫描分解的基于扫描模拟的反馈 - 馈线控制执行摘要摘要大大降低了激光粉池床融合添加剂制造的融化池和微观结构的变化:管理当地几次对激光粉末床融合(L-PBF)添加剂生产性能的影响是最高核心的一项优先级。因此,该程序的目的是开发一种基于仿真的反馈馈电控制方法,以维持整个L-PBF部分的熔体池和微观结构的一致性。特定的研究目标包括:(1)基于通过不同过程参数产生的测量熔体池维度开发经过实验验证的计算流体动力学(CFD)模型; (2)开发有效的混合CFD和FEM(有限元方法)模型,以模拟多轨,多层方案; (3)开发基于迭代模拟的反馈 - 馈线控制模型。该项目中的重点材料是基于镍的合金inconel 718,它广泛用于高温核应用中,例如核反应堆核心和热交换器。拟议的研究旨在解决核能社区中L-PBF进程的资格和更广泛采用的关键障碍。核芯和热交换器等核应用通常包含不同尺寸的几何特征,这会导致熔体池和微观结构在整个零件过程中差异很大。拟议研究中的关键创新是开发了混合CFD-FEM模拟模型,该模型为此基于反馈 - 反馈控制方法。通过使用准确的扫描分辨过程模拟,通过调整过程参数(激光功率和扫描速度)来最佳控制熔体池尺寸,预计熔体池和微观结构将在整个复杂部分中更加一致。通过减少新的L-PBF产品开发中昂贵的实验数量,可以以较低的成本进行熔体池和微观结构一致性的巨大改进,以更有效地执行资格。大多数L-PBF热过程模拟模型使用CFD或FEM;但是,前者是准确的,但在计算上非常昂贵,而后者是有效的,但不足以捕获熔体池的尺寸和温度,而随着局部几何形状的变化。在拟议的CIFEM(CFD施加的FEM)过程仿真模型中,瞬态热场是根据高保真CFD模拟计算的,并通过深度学习来推断。这些温度值是根据局部热环境所包含熔体池的局部FEM区域施加的,而其他地方的热传导则由FEM求解。开发的基于CIFEM的工艺模拟预计将是基于CFD的模拟效率的30-50倍,同时保持熔体池和温度场的预测准确性。使用CIFEM模型最佳地控制局部过程参数,预计熔体池尺寸的变化将减少50-70%,从而导致更一致的微观结构。因此,该项目将解决社区中的基本优先事项之一,并有助于促进更广泛的L-PBF程序在安全至关重要的核应用中。首席调查员:Albert C. TO,Albertto@pitt.edu
关于十二生肖呼吸系统疾病表型天文台的研究协调会议:IAEA国际合作研究,用于早期检测新大流行(IAEA CT人工智能合作研究-ICAI项目)
本文档中包含的设计,工程和其他信息是为了获得适用的核监管机构审查,并确定本文包含的BWRX-300设计和许可基础信息的可接受性。GEH关于本文档中信息的唯一承诺包含在GEH与其客户或参与公用事业之间的合同中,并且本文档中没有任何内容应解释为更改这些合同。除了未预定的目的以外,任何人使用此信息的使用均未授权;关于任何未经授权的使用,不提供任何陈述或保修,也不得推断出任何有关本文档中包含的信息的完整性,准确性或实用性的责任假设。提供本文档不会传达任何明示或暗示的许可,以使用任何专利的发明或GEH,其客户或本文中披露的其他第三方的专有信息,或未经GEH,其客户或其他第三方的书面许可而发布该文件的任何权利。
JHR 是 CEA 卡达拉什正在建造的新型材料测试反应堆。目前,堆芯的中子特性是利用 HORUS3D/N 确定性方案计算的。该方案的工业路线采用两步法,首先是 APOLLO2 MOC 格子计算,然后是基于扩散理论的 CRONOS2 堆芯计算。APOLLO3 ® 是 CEA 新的确定性计算平台,它采用了先进的计算方法。在本文中,正在使用 APOLLO3 ® 带来的新方法为 JHR 建立一个新的参考计算方案。该计算方案通过 TRIPOLI4 ® 执行的参考随机模拟进行了验证。与在 APOLLO3 ® 中模拟 HORUS3D/N 方案的方案结果相比,格子步骤的改进可以显著减少燃料元件和 Hf 控制棒的吸收率偏差。新方案的主要变化在于使用子群自屏蔽法替代精细结构等效法。这些变化与细化几何网格和 383 能级组结构有关。来自晶格台阶的压缩截面用于计算插入五根 Hf 控制棒的 2D JHR 堆芯配置的中子平衡。新的计算方案中添加了堆芯反射器超级晶胞,以产生细化的反射器截面。使用较粗的 41 组结构执行的 MOC 2D 堆芯计算保留了晶格计算的改进,并可以更好地预测反应性和反应速率。下一步将使用包括堆芯实验装置在内的带耗尽层的 3D Sn MINARET 全堆芯计算。关键词:APOLLO3 ®、JHR、确定性计算方案、共振自屏蔽方法。