训练图分类器能够区分健康的大脑和功能障碍的大脑,可以帮助识别与特定认知表型相关的子结构。然而,图形分类器的仅预测能力是神经科学家的兴趣,这些神经科学家有很多用于诊断特定精神疾病的工具。重要的是对模型的解释,因为它可以提供新颖的见解和新假设。在本文中,我们提出了反事实图作为对任何黑盒图形分类器进行局部事后解释的一种方法。给定图形和一个黑框,反事实是一个图形,虽然与原始图具有很高的结构相似性,但在其他类别中由黑框分类。我们提出并进行了反对反事实图搜索的几种策略。我们针对具有已知视觉反事实的白盒分类器的实验,表明我们的方法虽然启发式,但可以产生非常接近最佳的方法。最后,我们展示了如何使用反事实图来构建全局解释,从而正确捕获了不同黑盒分类器的行为并为神经科学家提供有趣的见解。
我们最初的努力旨在满足各军种和作战指挥官的迫切需求。然而,随着 sUAS 技术和扩散继续以挑战国防部在当前范式下有效响应能力的速度发展,显然我们不能仅仅依靠物资解决方案。相反,我们必须重新审视如何应对 sUAS 给联合部队带来的日益严峻的挑战,方法是考虑和开发涵盖整个条令、组织、培训、物资、领导和教育、人员、设施政策 (DOTMLPF-P) 范围的解决方案。该战略为解决本土、东道国和应急地点的危险和威胁等各种 sUAS 问题提供了框架。随着技术和系统的发展,该战略将需要持续评估以确保国防部跟上步伐。要取得成功,国防部所有利益相关方必须齐心协力。各军事部门、作战司令部、联合参谋部和其他国防部部门将持续关注 sUAS,确保美国及其盟友和伙伴国家采取最有效的应对措施。
女性通常承担哺乳动物的大部分繁殖负担。在人类中,这种负担进一步加剧了,因为大型人类大脑的进化优势以女性生殖健康的巨大成本产生了巨大的代价。妊娠因此在妇女的身体和情感上成为高度要求的阶段,因此需要监测以确保最佳结果。此外,越来越多的社会趋势朝着生殖并发症迈进,部分原因是母亲的年龄增加和全球肥胖大流行需求对女性生殖健康的监测更加紧密。这篇评论首先提供了女性生殖生物学的概述,并进一步探讨了大规模数据分析和 - 组技术(基因组学,转录组学,蛋白质组学和代谢组学)对诊断,预后和对女性生殖障碍的管理的利用。此外,我们还探索了用于预防和管理的预测模型的机器学习方法。此外,移动应用程序和可穿戴设备提供了不断监测健康的希望。这些互补技术可以合并为监测女性(与生育有关的)健康以及对提供干预溶液的任何早期并发症的检测。总而言之,技术进步(例如,OMICS和可穿戴设备)对女性生殖疾病的诊断,预后和管理有希望。 在女性生殖医疗保健中迫切需要在社会利益的国家医疗保健系统中进一步实施这些技术的系统整合。总而言之,技术进步(例如,OMICS和可穿戴设备)对女性生殖疾病的诊断,预后和管理有希望。在女性生殖医疗保健中迫切需要在社会利益的国家医疗保健系统中进一步实施这些技术的系统整合。
自2005年FDA批准Sorafenib以来,口服多次激酶抑制剂已成为转移性肾细胞癌(MRCC)的基石治疗。2021年更新的欧洲泌尿外科协会肾细胞癌指南建议将免疫检查点抑制剂加上口服酪氨酸激酶抑制剂(TKI)组合,以对MRCC进行第一线治疗。相对于单独的口服TKI,这种方法在无进展和整体生存(OS)方面取得了可观的增长。对于无法服用或耐受检查点抑制剂的患者以及对免疫疗法反应的患者,仍考虑口服TKI单一疗法。MRCC患者中的1个口腔TKI治疗序列的研究很少2,可能构成疾病进展的预后标志。3,4
数据不平衡,也称为数据的长尾分布,是数据驱动模型的重要挑战。在“意义上的歧义”(WSD)任务中,单词感官分布的长尾现象更为普遍,这使得很难有效地表示和识别长尾感官(LTSS)。因此,探索不严重依赖训练样本量的表示形式是对抗LTSS的重要方法。考虑到许多新状态,即叠加状态,可以从量子力学中的几个已知状态构建,因此超级态态提供了从从较小的样本量中学到的下较低表示中获得更准确的表示的可能性。受量子叠加状态的启发,提出了一种在希尔伯特空间中的表示方法,以赋予对大样本量的依赖性,从而使LTSS对抗。理论上证明了该方法的正确性,并在标准WSD评估框架下验证其有效性并获得最新性能。fur-hoverore,我们还测试了构建的LT和最新的跨语言数据集,并取得了令人鼓舞的结果。
从非侵入性大脑活动中解码语言引起了神经科学和自然语言处理研究人员越来越多的关注。由于脑记录的噪声性质,现有的研究将脑到词的解码简化为二元分类任务,即区分脑信号是其对应的单词还是错误的单词。然而,这种成对分类任务不能促进实用神经解码器的发展,原因有二。首先,它必须枚举测试集中的所有成对组合,因此预测大词汇表中的单词效率低下。其次,完美的成对解码器无法保证直接分类的性能。为了克服这些问题并进一步实现现实的神经解码器,我们提出了一种新颖的跨模态完形填空 (CMC) 任务,即以上下文为提示,预测神经图像中编码的目标单词。此外,为了完成这项任务,我们提出了一种利用预训练语言模型来预测目标词的通用方法。为了验证我们的方法,我们对来自两个脑成像数据集的 20 多名参与者进行了实验。我们的方法在所有参与者中平均实现了 28.91% 的 top-1 准确率和 54.19% 的 top-5 准确率,远远超过了几个基线。这一结果表明我们的模型可以作为 CMC 任务的最新基线。更重要的是,它证明了从大脑神经活动中解码大词汇表中的某个单词是可行的。
本研究的重点是利用脑电图信号为想象词提供一个简单、可扩展、多类的分类器。六个波斯语单词以及静默(或空闲状态)被选为输入类。这些单词可用于控制鼠标/机器人运动或填写简单的计算机表格。本研究的数据集是五名参与者在五次会话中收集的 10 条记录。每条记录重复了 20 次所有单词和静默。特征集由 1 至 32 Hz 频带中 19 个脑电图通道的归一化 1 Hz 分辨率频谱组成。二元 SVM 分类器组的多数规则用于确定特征集的相应类。通过蒙特卡洛交叉验证估计分类器的平均准确度和混淆矩阵。根据记录类间和类内样本的时间差异,定义了三种分类模式。在长时间模式下,即涉及整个数据库中单词的所有实例,单词-沉默的平均准确率约为 58%,单词-单词的平均准确率约为 60%,单词-单词-沉默的平均准确率约为 40%,七类分类(6 个单词+沉默)的平均准确率约为 32%。对于短时间模式,当仅使用相同记录的实例时,准确率分别为 96%、75%、79% 和 55%。最后,在混合时间分类中,每个类别的样本都来自不同的记录,平均准确率最高,约为 97%、97%、92% 和 62%。即使在长时间模式的最坏情况下,这些结果也明显优于随机结果,并且与该领域先前研究报告的最佳结果相当。