上个世纪的快速技术进步导致温度传感领域中带来了新的Challenges。准确,遥远,无接触式和实时微观和纳米级的温度映射在细胞成像,微流体和纳米流体以及集成电路设计中的需求巨大,[1-11]中,这些严格的要求需要使用光学方法。这些通常分为三个主要的猫:红外(IR)隆期,IR直接检测和远程光学/荧光热量表。,由于其出色的热分辨率(10-1 K),其中最常见的是IR射量方法,例如在商业设备中发现的方法。然而,要检测到的黑体辐射的长红外波长导致室内温度(RT)对象的固有低空间分辨率为≈10µm,这是由于abbe差异的限制所期望的。对IR光的检测也遭受了由于吸收而缺乏与广泛的光学成分相兼容。[12,13]或者,在可见区域中运行的远程光学方法,例如,通过测量荧光强度或衰减时间,[14]达到了很高的热分辨率,并且可能由于较低的衍射极限而有可能提供较高的空间分辨率,并且在常见媒体(例如水和玻璃)中透明度。[13,15,16]基于强度的量化,由于光散射(样品拓扑,磷光粒子形态等)而容易出现错误。),不均匀的磷光器分布,非态磷光物种形成或批处理变异性等。虽然基于荧光时代的热量成像是继承了许多此类局限性,但其部署通常会因适合特定应用的特定要求的磷剂的可用性而受到阻碍。我们的本文提出的研究涉及在RT周围温度下在温度下进行高空间和热分辨率热图形的新型热液少量探索。在这种情况下,我们发现已知的热燃料载体,即有机染料,聚合物,量子点,稀有掺杂的金属氧化物,[17-25]面临限制,例如材料制造或薄膜沉积,耐用性和健壮性的耐用性和稳健性的耐磨性,或者不适合特定范围的特定方法或常见的特定方法。
一系列卡宾-金-乙炔配合物 [(BiCAAC)AuCC] n C 6 H 5 − n ( n = 1,Au1;n = 2,Au2;n = 3,Au3;BiCAAC = 双环(烷基)(氨基)卡宾) 已被高产率合成。化合物 Au1–Au3 呈现深蓝色至蓝绿色磷光,在所有介质中量子产率高达 43%。金配合物 Au1–Au3 中 (BiCAAC)Au 部分的增加会增加紫外可见光谱中的消光系数和更强的振子强度系数,理论计算支持这一点。发光辐射速率随着 (BiCAAC)Au 部分的增加而降低。时间相关密度泛函理论研究支持磷光的电荷转移性质,这是因为单重态(S 1 )和三重态(T 1 )之间的能隙很大(0.5–0.6 eV)。瞬态发光研究揭示了非结构化紫外瞬时荧光和 428 nm 振动分辨长寿命磷光的存在。有机发光二极管 (OLED) 采用物理气相沉积法制成,以 2,8-双(二苯基磷酰基)二苯并[b,d]呋喃 (PPF) 作为主体材料,与复合物 Au1 反应。在 405 nm 处观察到近紫外电致发光,器件效率为 1%,同时在 10 尼特的实际亮度下 OLED 器件寿命 LT 50 长达 20 分钟,表明一类非常有前景的材料可用于开发稳定的紫外 OLED。