摘要 量子点发光器件已成为显示应用的重要技术。它们的发射是分别通过空穴和电子导电层传输的正负电荷载流子复合的结果。这些器件中电子或空穴传输材料的选择不仅要求层间能级对齐,而且还要求平衡电子和空穴向复合位点的流动。在这项工作中,我们研究了一种通过控制电荷载流子动力学来优化器件的方法。我们采用阻抗谱来检查电荷载流子通过每一层的迁移率。得出的迁移率值提供了一条路径来估算每个电荷载流子向发光层的跃迁时间。我们认为,当两个电荷载流子向有源层的跃迁时间相似时,可以获得最佳器件结构。最后,我们通过重点优化电子传输层的厚度来检验我们的假设。
等离子体增强化学气相沉积 (PECVD) SiC 基阻隔涂层已被开发用于保护包括聚合物发光二极管 (PLEDS) 在内的发光设备。薄膜封装由不同 PECVD 层的堆叠组成,各个层针对特定的涂层特性进行了优化,包括应力控制和高水/氧阻隔特性。这些阻隔涂层已成功应用于 PLED 设备,优化的阻隔堆叠既没有出现可见的机械故障,也没有出现任何颜色光谱功率分布偏移。阻隔层的 PECVD 沉积会导致设备电流效率略有下降,这是在没有水和氧的情况下测量时发光寿命延长的代价。PECVD 堆叠的阻隔特性已显示可将发光寿命提高高达 70% 的玻璃密封设备寿命,并且目前受到薄膜阻隔中出现的缺陷的限制。