支持的品牌 Integrel E-Power 与各种品牌的电力电子设备和电池配合使用。对每个品牌的电池进行集成系统测试,以确保安全、稳定的运行。此外,我们与所有支持的电力电子设备供应商密切合作,以确保无缝集成。主要电池和电力电子设备合作伙伴包括: • Victron • MG • Mastervolt 支持的发动机 Integrel Solutions 与一些船用柴油发动机制造商合作,开发了用于 Integrel E-Power 的支架,以便正确安装和运行,确保安全、稳定的运行。
在过去十年中,麦吉尔引擎在促进麦吉尔工程学院及其他地区的创新和创业方面发挥了关键作用。通过其计划、资源和指导,引擎帮助我们的社区将早期的想法转化为对现实世界产生影响的解决方案和企业。它还发展成为一个充满活力的中心,学生和研究人员可以在这里发挥创造力、开展协作并获得多学科的视角和专业知识。感谢我们所有的捐助者、员工、志愿者、校友、合作伙伴和成员为这一旅程做出的贡献。你们的热情和支持使引擎成为今天的样子。我邀请您阅读报告,以更详细地了解麦吉尔引擎的成就,并了解更多有关他们在过去一学年支持的团队和企业的信息。作为我们支持处于早期发展阶段的技术型创业项目的使命的一部分,麦吉尔引擎继续发挥孵化器的结构和培训作用,通过从构思阶段开始支持项目来培育整个生态系统。我们的合作和社区价值观之一体现在我们中心的广泛使用上。仅今年一年,麦吉尔大学各团体就预定了中心举办 100 多场活动和会议,其中包括研究机构、学生俱乐部和工程学院设计团队等。我们的另一个价值体现在与行业增加研发合作。由于 Engine 与创新与合作办公室合作促进行业合作,我们与 NSERC 的合作增加了 41%,与 Mitacs 的合作增加了 44%,公司互动增加了 36%。我要感谢整个 Engine 团队为支持我们的使命和社区所做的不懈努力。我还要特别感谢 Stephen Hamelin 最近的捐赠,这使我们能够在夏季创业实习奖励计划中支持更多学生和创业公司。麦吉尔 Engine 去年取得的所有成就都值得称赞。我期待未来的合作。
本论文由奖学金存储库 @ Florida Tech带给您免费和公开访问。已被授权存储库的授权管理员 @佛罗里达理工学院纳入这些论文和论文。有关更多信息,请联系kheifner@fit.edu。
摘要:现代可重复使用发射器的发展,例如采用 LOX/LCH4 Prometheus 发动机的 Themis 项目、采用 LOX/LH2 RSR2 发动机的可重复使用 VTVL 发射器第一级演示器的 CALLISTO 以及采用 Merlin 1D 发动机的 SpaceX 猎鹰 9 号,都凸显了对先进控制算法的需求,以确保发动机的可靠运行。这些发动机的多次重启能力对节流阀提出了额外的要求,需要扩展控制器有效性域,以便在各种操作状态下安全地实现低推力水平。这种能力也增加了部件故障的风险,尤其是当发动机参数随着任务概况而变化时。为了解决这个问题,我们的研究使用多物理系统级建模和仿真,特别关注涡轮泵部件,评估了可重复使用火箭发动机 (RRE) 及其子部件在不同故障模式下的动态可靠性。使用 EcosimPro-ESPSS 软件(版本 6.4.34)进行的瞬态条件建模和性能分析表明,涡轮泵组件在标称条件下保持高可靠性,涡轮叶片即使在变化的热负荷和机械负荷下也表现出显著的疲劳寿命。此外,提出的预测模型估计了关键部件的剩余使用寿命,为提高可重复使用火箭发动机中涡轮泵的寿命和可靠性提供了宝贵的见解。本研究采用确定性、热相关结构模拟,关键控制目标包括燃烧室压力和混合比的最终状态跟踪以及操作约束的验证,以 LUMEN 演示发动机和 LE-5B-2 发动机为例。
关键技术:• 3D 空气动力学,即高负荷压缩机和涡轮机→部件效率、重量、SFC• 最先进的稀薄燃烧→SFC、排放• 先进材料(高温和金属复合材料)→更高的 T4、重量、SFC• 先进的冷却技术→更高的 T4、重量、SFC• 先进的机械设计和密封→更紧密的间隙和缝隙、效率、SFC
在飞机发动机系统中,嵌入在发动机中的传感器在飞行周期期间收集关键的操作数据,这对于预后和健康管理(PHM)框架至关重要。例如,在这项研究[1]中,作者引入了一个经过暂时快照数据训练的经常性神经网络,以得出指示发动机降解的状态向量。最近的进步导致在飞行操作过程中收购了连续CEOD(连续发动机操作数据),从而提供了更全面的数据集。CEOD包括由机板系统获得的多个传感器读数和计算输出以及随后处理的飞行后。利用此连续数据流显示了精炼算法以达到更高的精度和效率的潜力,从而克服了与使用快照数据相关的约束。值得注意的是,它在异常检测方法中发挥了作用[2]。我们的研究工作解决了两个主要目标。首先,它提出了一种用于使用CEOD的飞机发动机数据驱动的模拟器的方法。此模拟器模拟了真实飞机发动机的复杂动力学行为,从而在各种操作条件下(包括多样化的飞行机制和发动机控制)实现了复杂的模拟。此类模拟为影响发动机健康的各种因素提供了宝贵的见解。其次,它证明了该模拟器在物理引擎中观察到的降解过程中的实用性。所提出的应用程序代表了一个多功能算法框架,能够模拟飞机发动机并监视其
CARB工作人员准备了本文件,以审查董事会于2021年12月批准的委员2021修正案将在完全实施后向加利福尼亚人提供87.7亿美元的健康福利。董事会在第21-28号决议中指示员工“每年审查实施拟议的修正案的状态,并在2025年至2026年的2026年期限内进行技术审查,以评估[模型年度] 2028年2028年零发动机标准的零发动机或其他设备或任何其他可能对模型Z Z New Models Empem-Zeore Emm-2028 Models Emportion的进度。 2 2021修正案于2022年9月14日获得行政法办公室批准,并于2023年1月1日生效。新的排放标准从2024年型号开始适用。这是涵盖目前有效的2021修正案状态的第一个年度实施审查。员工将对该型号的高压垫圈(CC)大于或等于225立方百分比的压力垫圈(CC)和2025年至2026年时间段的高压垫圈进行技术审查和其他年度实施审查,以评估型号2028年度零排放标准的进度。
将高超音速技术扩展到大批量生产对美国国防部 (DoD) 提出了重大挑战。高超音速系统非常复杂,由最先进的材料组成,并且依赖于错综复杂的供应链。为了保持和扩大美国相对于外国对手的技术优势,必须采用突破性的制造解决方案来缓解这些问题。金属增材制造 (AM),特别是激光粉末床熔合 (LPBF),提供了一种变革性方法来应对这些挑战,它可最大限度地降低成本和交货时间、降低复杂性、利用先进材料并简化供应链。
我们提出了Aesim,这是一种使用基于变压器的跨性生成对抗网络开发的数据驱动的飞机发动机模拟器。AESIM生成飞机发动机传感器测量的样品,以完整的航班为条件,以代表飞行条件的给定飞行任务配置文件进行。它构成了飞机发动机数字双胞胎的重要工具,能够模拟它们的不同飞行任务的性能。可以比较在相同的操作条件下不同发动机的行为,为给定引擎的各种方案ios模拟,促进了诸如发动机行为分析,绩效限制识别以及在全球预后和健康管理策略内的维护时间表等应用。它还允许缺少飞行数据,并通过综合可用于公共研究目的或数据挑战共享的合成飞行数据集来解决机密性问题。
注意:1。在最佳垂直焦点的位置测量。系统与交付的下限对齐。水平梁大小可以调整为上限。SYS TEM以减少或扩展水平焦点宽度。请参阅操作员的手册。2。从物镜组件的机械表面(输出端)测量。3。从标称梁轴测量。使用倾斜/偏航调整调整细胞内部,同时满足所有光学规格。4。假设距CellX输出面不到200 mm(光路径长度)内的物镜组件。5。使用望远镜调整CellX内部调整,同时满足所有光学规格。
