计算位置为 x new 的新分支的解 对新分支 ( x new ) 和原分支 ( x i ) 进行 Pareto 优势分析 如果新分支 ( x new ) 优于原分支 ( x i ) 则用新分支 ( x new ) 替换原分支 ( x i ) break else 将其试验次数增加 1 End If
环氧树脂广泛用于电路板层压板、结构复合材料、粘合剂和表面涂层 [1]。热固性聚合物的交联度更高。环氧树脂具有更好的机械、物理和摩擦学性能,因此被用于结构应用。环氧树脂具有高模量、抗疲劳、低蠕变,并且在高温下也能很好地工作 [2-4]。交联密度越高,断裂韧性、抗裂纹起始和生长的刚度越低,这反过来限制了环氧树脂在现代应用中的使用 [5]。在环氧树脂固化过程中,交联链中会产生应力,这会降低断裂韧性、降低抗裂纹起始能力以及由于塑性变形而限制空隙的增长 [6,7]。通过改变环氧树脂的组成并混合不同的纳米填料作为第二阶段,可以应对这些挑战,从而实现高级复合材料应用 [8,9]。环氧树脂与纳米填料的混合可提高断裂韧性、刚度和强度[10]。这些纳米填料包括无机纳米颗粒,如粘土[11]、Al2O3[12]、ZrO2[13,14]和TiO2[4]。加入无机纳米填料如碳纳米管[15]和SiO2[5]后,表现出良好的机械性能,有趣的是,环氧树脂的韧性增加了,而基本性能没有改变。基质形态的变化主要是由于纳米填料渗透到致密的环氧交联网络之间。在目前的研究中,我们尝试生产SiO2/环氧树脂纳米复合材料。选择超声波技术,通过改变纳米填料的浓度来改变填料的粒径。
由于燃料成本不断上涨以及燃料燃烧后向大气中排放气体的影响,必须使用来自太阳的丰富太阳能作为驱动割草机的动力源。根据割草的一般原理,设计和开发了一台太阳能割草机。设计的太阳能割草机由直流 (DC) 电机、可充电电池、太阳能电池板、不锈钢刀片和控制开关组成。对开发的机器在不同刀片厚度和不同切割高度下的性能进行了评估。发现,当刀片厚度为 3 毫米和 5 毫米、切割高度为 50 毫米时,机器的最大田间效率为 78.06%,当刀片厚度为 4 毫米、切割高度为 25 毫米时,最小田间效率为 71.93%。割草机的最大有效田间容量为 0.0306 公顷/小时,刀片厚度为 3 和 5 毫米,割草高度为 50 毫米;最小有效田间容量为 0.0282 公顷/小时,刀片厚度为 4 毫米,割草高度为 25 毫米。空载条件下观察到的功耗为每片刀片 36 瓦。负载条件下的最大功耗为 264 瓦,刀片厚度为 5 毫米,割草高度为 25 毫米;负载条件下的最小功耗为 3 毫米,刀片厚度为 50 毫米。
基于游戏化理论的日语学习电子学习系统的开发及其效果测量 Astrid Tamara Makoto Shishido 东京电机大学 astrid.tamara@hotmail.com 1.引言 日语是世界上最难的语言之一 [1]。对于母语不使用汉字的人来说,学习日语很困难 [1][2]。这是因为汉字的书写和阅读系统与他们的母语之间存在很大差异 [1]。在日语书写系统中,平假名、片假名和汉字同时使用 [1][3]。片假名和平假名均由 46 个字符组成,其中一些字符看起来相似,外国学生很难区分 [4][5]。然而,学习汉字比平假名和片假名更难、更复杂 [1][2]。主要是因为汉字种类繁多,每个汉字都有多种含义和读法 [4]。根据日本文部科学省 (MEXT) 的数据,截至 2010 年,日本语中必学的常用汉字有 2316 个 [6]。因此,外国学生在学习汉字方面经常遇到困难 [1] [2]。电子学习是一种基于计算机的教育工具或系统,可以让人们随时随地学习 [7]。随着智能手机、平板电脑、可穿戴技术和移动设备的使用增加,电子学习市场正在稳步扩大 [8]。现在的学习者是在科技的陪伴下长大的,他们有不同的学习方式 [9]。这对教师来说是一个挑战,因为他们需要使用
摘要:根据某飞机超静力学航空发动机吊架结构静力试验的要求,设计了一套适用于该飞机超静力学航空发动机吊架结构静力试验的试验系统,该试验技术解决了超静力学发动机吊架支撑刚度模拟、航空发动机载荷模拟等关键问题。基于这些试验技术,完成了某飞机超静力学航空发动机吊架的静力试验。试验结果表明,该试验系统工作性能稳定可靠,试件航空发动机吊架在各种工况下均未产生裂纹和有害大变形,静强度和刚度均满足设计要求。该试验技术可应用于类似超静力学试件的静力试验,试验数据可作为航空发动机吊架结构静强度和刚度性能评估的依据。
本文介绍了“电路”教育支持工具的开发过程。该工具名为iCASS(交互式电路与系统研讨会)。iCASS可以通过简单的GUI(图形用户界面)操作,利用交互式动画和“声音”来了解模型的“运动”。由于该工具使用WWW(万维网)系统作为IT(信息技术)教育,因此可以作为电子学习工具引入。在此工具中,不使用键盘上的数值。因此,学生无需处理超过必要范围的繁琐数值,即可了解物理现象(工程模型的“运动”)。此外,iCASS可以通过将实际模型与网络上的动画连接起来,避免模拟的“混乱”。在这里,为了连接实际模型和 iCASS,我们使用 PICNIC(使用外围接口控制器的网络接口卡)。通过在实际课堂上使用 iCASS,可以提高学生的理解水平,并可能吸引更多学生的兴趣。建议的电子学习工具可在 http://www.sia.co.jp/ ~ icass/index 找到。html。
本文介绍了“电路”教育支持工具的开发过程。该工具名为iCASS(交互式电路与系统研讨会)。iCASS可以通过简单的GUI(图形用户界面)操作,利用交互式动画和“声音”来了解模型的“运动”。由于该工具使用WWW(万维网)系统作为IT(信息技术)教育,因此可以作为电子学习工具引入。在此工具中,不使用键盘上的数值。因此,学生无需处理超过必要范围的繁琐数值,即可了解物理现象(工程模型的“运动”)。此外,iCASS可以通过将实际模型与网络上的动画连接起来,避免模拟的“混乱”。在这里,为了连接实际模型和 iCASS,我们使用 PICNIC(使用外围接口控制器的网络接口卡)。通过在实际课堂上使用 iCASS,可以提高学生的理解水平,并可能吸引更多学生的兴趣。建议的电子学习工具可在 http://www.sia.co.jp/ ~ icass/index 找到。html。
本文介绍了“电子电路”教育支持工具的开发过程。该工具名为 iCASS(交互式电路与系统研讨会)。iCASS 可通过简单的 GUI(图形用户界面)操作,使用交互式动画和“声音”了解模型的“运动”。由于此工具使用 WWW(万维网)系统作为 IT(信息技术)教育,因此可以作为电子学习工具引入。在此工具中,不使用键盘上的数值。因此,学生无需处理超过需要的繁琐数值即可了解物理现象(工程模型的“运动”)。此外,通过将实际模型与网络上的动画连接起来,iCASS 可以避免模拟的“混乱”。在这里,为了连接实际模型和 iCASS,我们使用 PICNIC(使用外围接口控制器的网络接口卡)。通过在实际课堂上使用 iCASS,可以提高学生的理解水平,并可能吸引更多学生的兴趣。建议的电子学习工具可在 http://www.sia.co.jp/~icass/index. html 找到。
本文介绍了“电路”教育支持工具的开发过程。该工具名为iCASS(交互式电路与系统研讨会)。iCASS可以通过简单的GUI(图形用户界面)操作,利用交互式动画和“声音”来了解模型的“运动”。由于该工具使用WWW(万维网)系统作为IT(信息技术)教育,因此可以作为电子学习工具引入。在此工具中,不使用键盘上的数值。因此,学生无需处理超过必要范围的繁琐数值即可了解物理现象(工程模型的“运动”)。此外,iCASS可以通过将实际模型与网络上的动画连接起来,避免模拟的“混乱”。在这里,为了连接实际模型和 iCASS,我们使用 PICNIC(使用外围接口控制器的网络接口卡)。通过在实际课堂上使用 iCASS,可以提高学生的理解水平,并可能吸引更多学生的兴趣。建议的电子学习工具可在 http://www.sia.co.jp/ ~ icass/index 找到。html。
