阶段II:BFDEP的开发健康信念模型(HBM)用于设计BFDEP模块。 HBM模型基于心理和行为理论,这些理论解释了人类健康的决策和随后的行为。 它强调了与健康相关的行为的两个方面:1)避免疾病的愿望或特定健康活动可以预防或治愈疾病的想法,以及2)相信特定的健康相关行动会预防或治愈疾病。 该模块的期望结果是根据母亲对相关健康活动的优势和缺点的看法来影响母亲的决定。 以前的发现表明,基于HBM的教育计划显示出基于模型构造随着时间的推移而增加参与者的知识的好处。 [15]阶段II:BFDEP的开发健康信念模型(HBM)用于设计BFDEP模块。HBM模型基于心理和行为理论,这些理论解释了人类健康的决策和随后的行为。它强调了与健康相关的行为的两个方面:1)避免疾病的愿望或特定健康活动可以预防或治愈疾病的想法,以及2)相信特定的健康相关行动会预防或治愈疾病。该模块的期望结果是根据母亲对相关健康活动的优势和缺点的看法来影响母亲的决定。以前的发现表明,基于HBM的教育计划显示出基于模型构造随着时间的推移而增加参与者的知识的好处。[15]
电池的情况同样令人印象深刻。与大多数模块化技术一样,上线的制造能力越大,电池就越便宜,从而刺激更多需求,进而刺激对制造和创新的进一步投资,产生多米诺骨牌效应,导致价格通缩和能量密度惊人地提高。在过去 30 年里,电池价格下跌了 99%,仅在过去 10 年就下跌了 82% 以上。与此同时,电池密度却增加了 5 倍。电池容量每增加一倍,电池价格就会下降 19%,能量密度就会提高 7%。20
本系列报告的主要目的是全面概述行业格局,包括药物发现、临床研究和制药研发其他方面采用人工智能的情况。本概述以信息丰富的思维导图和信息图表的形式突出趋势和见解,并对构成行业空间和关系的关键参与者的表现进行基准测试。这是一项概述分析,旨在帮助读者了解当今行业正在发生的事情,并可能让人们了解接下来会发生什么。自上一版以来,我们引入了大量更新,重点介绍了快速发展的行业动态,以及制药人工智能领域投资和业务发展活动的总体增长。人工智能生物技术公司、生物技术投资者和制药组织的名单已扩大到包括新实体,并增加了一份新的领先合同研究组织 (CRO) 名单,以概述合同研究行业对高级数据分析技术日益增长的兴趣。我们还重新审视了上一版的数据和章节,并反思了自那以后发生的变化。除了投资和商业趋势外,该报告还对人工智能应用和研究的一些最新成果提供了技术见解。
A. 互联网 互联网的发展可以说是过去 60 年中最重大的工程成就,如今它将数十亿人彼此连接在一起,并将他们与数十亿台设备连接在一起,能够快速交换不同格式的数字信息。互联网建立在 19 世纪初电报的基础之上。如此复杂的系统,不断被修改和添加,被如此多的人用于关键服务,怎么会表现得如此出色?互联网协议套件 [3] 是其主要构建模块之一,它将互联网抽象为四层。从下往上,这些层称为链路层、网络层、传输层和应用层。每一层都提供连接机器和人的服务。特定层的服务被上一层的服务使用,反过来也使用下一层的服务。
卟啉单胞菌(牙龈疟原虫)是一种革兰氏阴性菌细菌,是牙周炎的主要病因,牙周炎是与牙周疾病发展密切相关的疾病。牙周炎的进展是一种慢性传染病,与炎症性免疫反应无关。炎性细胞因子通过免疫调节作用于牙周组织,从而导致牙周组织破坏。最近的研究已经建立了牙周炎与各种全身性疾病之间的联系,包括心血管疾病,肿瘤和神经退行性疾病。神经退行性疾病是由免疫系统功能障碍引起的神经系统疾病,包括阿尔茨海默氏病和帕金森氏病。神经退行性疾病的主要特征之一是一种受损的炎症反应,它通过小胶质细胞激活介导了神经素的肿瘤。一些研究表明,牙周炎与神经退行性疾病与牙龈疟原虫作为主要罪魁祸首之间存在关联。牙龈牙龈可通过多种途径(包括肠脑轴)穿越血脑屏障(BBB),或介导神经素的炎症和损伤,从而影响神经元的生长和生存,并参与神经退行性疾病的发作和进展。然而,缺乏关于神经退行性疾病的传染性起源的研究的全面和系统摘要。本文回顾并总结了牙龈疟原虫与神经退行性疾病及其可能的调节机制之间的关系。本综述为理解神经退行性疾病发展的理解提供了新的观点,并突出了研究和开发用于治疗神经退行性疾病的量身定制药物的创新方法,尤其是从它们与牙龈疟原虫关联的角度来看。
海上和运输行业创新多样性的增长以及自动船舶技术的出现正在吸引有关学术界,工业和监管机构中海上自主地表运营(Mass)运营的讨论。通过预测海员和非隔壁者将参与自主船的关键操作,研究人员正在积极调查未来大众运营商可能要求的新技能和能力。本文作者进行的最新研究涉及一项定性研究,包括对包括海员,海上监管机构,海上教育和培训提供者以及其他海上专家在内的利益相关者的深入访谈。该研究确定了关键的技术和非技术技能,并且需要在框架中包括确定的技能和能力。在本文中,作者建立在过去和现在的研究基础上,以及在海上教育和培训的背景下确定这样做的挑战,迈向建立和实施框架的第一步。挑战是根据文献的评论以及针对其他行业劳动力建立的可用技能和能力框架的研究。确定的挑战(如果解决)将有助于建立一个受管制和条例的结构,以训练大众运营商,并满足海上利益相关者的期望。
1 1个数字健康干预中心,管理,技术和经济系,苏黎世,苏黎世,瑞士2号,瑞士2德国4个管理学院,路德维希 - 马克西利亚人 - 苏尼琴,慕尼黑,慕尼黑,德国5号5数字健康干预中心,技术管理研究所,圣加伦大学,圣加伦大学,瑞士圣加伦大学6内分泌学和代谢性疾病系,瑞士,瑞士,瑞士,科学,瑞士,科学,科学,科学,瑞士,科学,瑞士,科学。瑞士苏黎世苏黎世大学医疗保健9瑞士圣加伦大学医学院
文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控