Savoie Mont Blanc, CNRS, Laboratoire d'Anecy de Physique des Particules-In2p3, F-74000 Annecy, France 29 University of Naples "Federico II", I-80126 Naples, Italy 30 Ligo Laboratory, Massachusetts Institute of Technology, Cambridge, but 02139, USA 31 maastricht University, 6200 MD马斯特里奇,荷兰32 Nikhef,1098 XG阿姆斯特丹,荷兰33 Universit´e Libre de Brussels,布鲁塞尔,布鲁塞尔1050,比利时34 Institut Fresnel,Aix Marseille University E,CNRS,CNR,CNRS,Centrale Marseille,Centrale Marseille,Centrale Marseille,F-13013 Marseille,f-13013 Marseille,France 35 clise 35 cliss-sac-sac iclis in cliss in clis in clis in clis in clis in clis in clis in clise in 23 91405 ORSAY,法国36东京大学,东京,日本113-0033。 37巴塞罗那大学(UB),c。 MART´I i Franqu'es,1,08028西班牙,西班牙38 de f´ısica d'Als Energies(Ifae),巴塞罗那科学技术研究所,校园UAB,E-08193 Bellaterra(巴塞罗那),西班牙贝尔特拉(Bellaterra),西班牙39 Gran Sasso Science Institute Institute floriany(Gran Saquitute)盖恩斯维尔,佛罗里达州32611,美国41数学,计算机和物理科学系,Udine大学,I-33100,I-33100,意大利Udine,42 INFN,Trieste,I-34127,I-34127,意大利TriesteSavoie Mont Blanc, CNRS, Laboratoire d'Anecy de Physique des Particules-In2p3, F-74000 Annecy, France 29 University of Naples "Federico II", I-80126 Naples, Italy 30 Ligo Laboratory, Massachusetts Institute of Technology, Cambridge, but 02139, USA 31 maastricht University, 6200 MD马斯特里奇,荷兰32 Nikhef,1098 XG阿姆斯特丹,荷兰33 Universit´e Libre de Brussels,布鲁塞尔,布鲁塞尔1050,比利时34 Institut Fresnel,Aix Marseille University E,CNRS,CNR,CNRS,Centrale Marseille,Centrale Marseille,Centrale Marseille,F-13013 Marseille,f-13013 Marseille,France 35 clise 35 cliss-sac-sac iclis in cliss in clis in clis in clis in clis in clis in clis in clise in 23 91405 ORSAY,法国36东京大学,东京,日本113-0033。37巴塞罗那大学(UB),c。 MART´I i Franqu'es,1,08028西班牙,西班牙38 de f´ısica d'Als Energies(Ifae),巴塞罗那科学技术研究所,校园UAB,E-08193 Bellaterra(巴塞罗那),西班牙贝尔特拉(Bellaterra),西班牙39 Gran Sasso Science Institute Institute floriany(Gran Saquitute)盖恩斯维尔,佛罗里达州32611,美国41数学,计算机和物理科学系,Udine大学,I-33100,I-33100,意大利Udine,42 INFN,Trieste,I-34127,I-34127,意大利Trieste
通过测量局部田间电位(LFP)或脑电图(EEG)信号(EEG)信号(EEG)信号(EEG)信号(EEG)信号,通常对人群水平的神经活动进行实验研究。为了进行观察到的神经活动和模拟神经活动之间的比较,重要的是,神经活动的模拟可以准确预测这些大脑信号。在人群层面上对神经敏化的模拟通常依赖于点神经元网络模型或点火率模型。虽然这些简化的神经活动的表示在计算上是有效的,但它们缺乏计算LFP/EEG信号所需的明确空间信息。已经提出了不同的启发式方法来克服这一限制,但是这些方法的准确性尚未得到充分评估。这样一种启发式方法,即所谓的内核方法,以前已采用有希望的结果,并且具有在电动脑信号产生的生物物理学中得到充分依据的其他优势。它基于网络模型中每个突触途径的计算速率至lfp/eeg kernels,之后可以直接从人口发射速率获得LFP/EEG信号。这相当于计算大脑信号的计算工作量的大规模降低,因为为每个人群计算大脑信号,而不是为每个神经元计算。在这里,我们研究了如何以及何时可以期望内核方法起作用,并提出了预测其准确性的理论框架。最后,我们证明了内核方法对于主导大脑信号的贡献最准确。我们表明,脑信号预测的相对误差是单细胞内核异质性和尖峰训练相关性的函数。因此,我们进一步建立了内核法作为一种有希望的方法,用于计算大型神经模拟的电信号。
抽象的信念 - 意外 - 意见(BDI)代理是一种受欢迎的代理体系结构。我们扩展了具有高级功能(例如恢复失败和声明性目标)的BDI编程语言的概念代理表示法(CAN),包括概率行动成果,例如反映失败的执行器和概率政策,例如用于概率计划和意图选择。该扩展名是在米尔纳的Bigraphs中编码的。通过应用我们的BigRapher工具和Prism模型检查器,可以研究和比较在不同的概率结果和计划/事件/意图选择策略下成功的可能性(意图完成)。我们提出了一个智能的制造用例。一个显着的结果是,与意图选择相比,计划选择的效果有限。我们还看到,动作失败的影响可能是边缘的,即使失败概率很大,也可以对代理做出更明智的选择。