钒氧化还原流量电池(VRB)系统涉及复杂的多物理和多时间尺度相互作用,其中电解质流速在静态和动态性能中起关键作用。传统上,固定流量已用于操作方便。但是,在当今高度动态的能源市场环境中,根据运营条件调整流量可以为提高VRB能源转换效率和成本效益提供显着优势。不幸的是,将电解质流速纳入传统的多物理模型对于VRB管理和控制系统来说过于复杂,因为实时操作要求用于船上功能的低计算和低复杂模型。本文介绍了一种新型的数据驱动方法,该方法将流速集成到VRB建模中,增强了数据处理能力和VRB行为的预测准确性。所提出的模型采用封闭式复发单元(GRU)神经网络作为其基本框架,在捕获VRB的非线性电压段方面表现出了非凡的熟练程度。GRU网络结构经过精心设计,以优化模型的预测能力,流速被视为关键输入参数,以解释其对VRB行为的影响。模型改进涉及分析在VRB操作中在各种流速下获得的精心设计的模拟结果。还设计和进行了实验室实验,涵盖了电流和流速的不同条件,以验证所提出的数据驱动的建模方法。对几种最新算法进行了比较分析,包括等效电路模型和其他数据驱动的模型,证明了考虑流速的基于GRU的VRB模型的优越性。由于GRU在处理时间序列数据方面的出色能力,该模型在宽范围内提供了令人印象深刻的准确终端电压预测,低误差率不超过0.023 V(1.3%)。这些结果表明了所提出的方法的功效和鲁棒性,突出了对管理和控制系统设计的准确VRB建模中流速的新颖性和重要性。
摘要 我们使用飞机调度场景中的尾部分配和精确覆盖问题,对迄今为止最大的量子退火器(5000+ 量子比特量子退火器 Advantage 及其 2000+ 量子比特前身 D-Wave 2000Q)的量子处理单元进行了基准测试。基准测试集包含小型、中型和大型问题,其中既有稀疏连接实例,也有几乎完全连接的实例。我们发现,Advantage 在几乎所有问题上都优于 D-Wave 2000Q,成功率和问题规模都有显著提高。特别是,Advantage 还能够解决 D-Wave 2000Q 无法再解决的具有 120 个逻辑量子比特的最大问题。此外,仍然可以由 D-Wave 2000Q 解决的问题可以通过 Advantage 更快地解决。然而,我们发现,D-Wave 2000Q 可以在不需要 Advantage 上存在的许多新耦合器的情况下解决稀疏连接问题并获得更好的成功率,因此提高量子退火器的连通性本身并不会提高其性能。
开发一种基于人工智能 (AI) 的方法,用于检测接受 FDG-PET/CT 分期的霍奇金淋巴瘤 (HL) 患者的局灶性骨骼/骨髓摄取 (BMU)。将单独测试组的 AI 结果与独立医生的解释进行比较。使用卷积神经网络对骨骼和骨髓进行分割。AI 的训练基于 153 名未接受治疗的患者。骨摄取明显高于平均 BMU 的被标记为异常,并根据总异常摄取平方计算指数以识别局灶性摄取。指数高于预定义阈值的患者被解释为具有局灶性摄取。作为测试组,回顾性纳入了 48 名在 2017-2018 年期间接受过分期 FDG-PET/CT 且活检证实患有 HL 的未接受治疗患者。十位医生根据局灶性骨骼/BMU 对 48 例病例进行分类。在 48 例 (81%) 的局部骨骼/骨髓受累病例中,大多数医生同意 AI 的观点。医生之间的观察者间一致性为中等,Kappa 值为 0.51(范围为 0.25–0.80)。可以开发一种基于 AI 的方法来突出显示使用 FDG-PET/CT 分期的 HL 患者中的可疑局部骨骼/BMU。核医学医生之间关于局部 BMU 的观察者间一致性为中等。
a 瑞典皇家理工学院,应用物理系,阿尔巴诺瓦大学中心,斯德哥尔摩,SE-114 21,瑞典 b 中子散射和成像实验室,保罗谢勒研究所,CH-5232,Villigen PSI,瑞士 c 纳米科学中心,尼尔斯玻尔研究所,哥本哈根大学,Nørre All e 59,DK-2100,哥本哈根 O,丹麦 d 都灵理工大学应用科学与技术系,Corso Duca Degli Abruzzi 24 10129,都灵,意大利 e 维也纳科技大学固体物理研究所,Wiedner Hauptstraße 8 e 10,1040,维也纳,奥地利 f 瑞典皇家理工学院 PDC 高性能计算中心,SE-100 44,斯德哥尔摩,瑞典 g Nordita,瑞典皇家理工学院和斯德哥尔摩大学,Hannes Alfv ens v € ag 12,SE-106 91,斯德哥尔摩,瑞典 h 东京大学固体物理研究所中子科学实验室,柏,千叶 277-8581,日本 i 东京大学跨尺度量子科学研究所,东京 113-0033,日本 j 高能加速器研究机构材料结构科学研究所,茨城 305-0801,日本 k 牛津大学无机化学实验室,牛津 OX1 3QR,英国 l 印度理工学院物理系,坎普尔 208016,印度 m 塔塔基础研究所 DCMPMS,孟买 400005,印度 n 查尔姆斯理工大学物理系,SE-412,哥德堡,瑞典
○ “第三种可能性可能在短短几年内出现,即当人工智能被赋予一个目标,包括或暗示维持其自身代理时,失去控制,这相当于生存目标。这可能是人类创造者有意为之,也可能是实现人类给定目标的一种手段(让人想起电影《2001:太空漫游》)。事实上,人工智能系统可能会得出结论,为了实现给定的目标,它不能被关闭。如果人类试图关闭它,可能会发生冲突。这听起来像科幻小说,但它是可靠的、真实的计算机科学。”
在过去的二十五年中,MAX 相及其衍生物 MXenes 已成为材料研究的焦点。这些化合物无缝融合了陶瓷和金属特性,具有高导热性和电导性、机械强度、低密度和耐极端条件性。它们的多功能性使其成为各种应用的有希望的候选材料,特别是在用于氢气释放的先进光催化和电催化中。此外,MAX 相和 MXenes 是潜在的储氢材料,具有独特的结构,可为高效的氢气储存和释放提供充足的空间,这对于燃料电池等清洁能源技术至关重要。本综述旨在全面分析它们在光催化、电催化和储氢中的作用,重点关注它们的层状晶体结构。MAX 相集成了优越的金属和陶瓷属性,而 MXenes 提供可调节的电子结构,可增强催化性能。持续探索对于充分发挥其潜力、推动清洁能源技术及其他领域至关重要。
合成生物学和人工智能 (AI) 的进步为现代生物技术提供了新的机遇。高性能细胞工厂是工业生物技术的支柱,最终决定了生物基产品在与石油基产品的激烈竞争中是成功还是失败。迄今为止,合成生物学面临的最大挑战之一是以一致和高效的方式创建高性能细胞工厂。作为所谓的白盒模型,已经开发了许多代谢网络模型并将其用于计算菌株设计。此外,近年来,人工智能驱动的菌株工程取得了巨大进展。这两种方法都有优点和缺点。因此,人工智能与代谢模型的深度整合对于构建具有更高滴度、产量和生产率的优质细胞工厂至关重要。本综述总结了最新的先进代谢模型和人工智能在计算菌株设计中的详细应用。此外,还讨论了人工智能和代谢模型深度整合的方法。预计由人工智能驱动的先进机械代谢模型将为未来几年高效构建强大的工业底盘菌株铺平道路。
本研究基于定量和定性分析方法构建的方法论框架,遵循 Pickering 和 Byrne (2014) 提出的步骤,进行系统的文献综述和文献收集设计,重点分析人工智能 (AI) 时代高等教育的想象未来。我们的研究旨在回答以下研究问题:(1)人工智能时代高等教育的想象未来是什么?(2)哪些因素影响高等教育教学过程与人工智能之间的联系?(3)学生和教师改进数据库和开发 ChatGPT 会产生什么影响?作者探讨了人工智能在西方世界当前大学治理安排和精神背景下的影响。深入分析与人工智能系统的出现相关的一些已确定的主要挑战、机遇和风险相一致,例如技术监控或学术界对人工智能和大型语言模型(如 ChatGPT)的普遍访问,并提出了在高等教育中明智地选择和使用人工智能解决方案进行学习和教学的论据。本研究采用的分析框架还用于总结该领域研究的新方向,以恢复大学的主导地位,提高学生、学者和公众的高等教育质量。
文章标题:人工智能(AI)在医疗保健中的应用:综述 作者:Mohammed Yousef Shaheen[1] 所属机构:沙特阿拉伯[1] Orcid ids:0000-0002-2993-2632[1] 联系电子邮件:yiroyo1235@tmednews.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要正确引用原始作品即可。使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行开放同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVRY8K.v1 预印本首次在线发布:2021 年 9 月 25 日
摘要 真实的核反应截面模型是可靠的重离子传输程序的重要组成部分。此类程序用于载人航天探索任务的风险评估以及离子束治疗剂量计算和治疗计划。因此,在本研究中,GSI-ESA-NASA 合作生成了总核反应截面数据集合。该数据库包括实验测量的总核-核反应截面。Tripathi、Kox、Shen、Kox-Shen 和 Hybrid-Kurotama 模型与收集的数据进行了系统比较。给出了有关模型实施的详细信息。指出了文献中的空白,并考虑了哪些模型最适合与太空辐射防护和重离子治疗最相关的系统的现有数据。