合成生物学和人工智能 (AI) 的进步为现代生物技术提供了新的机遇。高性能细胞工厂是工业生物技术的支柱,最终决定了生物基产品在与石油基产品的激烈竞争中是成功还是失败。迄今为止,合成生物学面临的最大挑战之一是以一致和高效的方式创建高性能细胞工厂。作为所谓的白盒模型,已经开发了许多代谢网络模型并将其用于计算菌株设计。此外,近年来,人工智能驱动的菌株工程取得了巨大进展。这两种方法都有优点和缺点。因此,人工智能与代谢模型的深度整合对于构建具有更高滴度、产量和生产率的优质细胞工厂至关重要。本综述总结了最新的先进代谢模型和人工智能在计算菌株设计中的详细应用。此外,还讨论了人工智能和代谢模型深度整合的方法。预计由人工智能驱动的先进机械代谢模型将为未来几年高效构建强大的工业底盘菌株铺平道路。
我们提出了一项详细的研究,该研究对具有连续体的quasibound状态的机械符合光子晶体的微腔。最近预计此类系统将减少Fabry-Pérot-type光学机械腔中的光损失。但是,它们需要两个相互面对的光子晶体平板,这对实验实现构成了巨大的挑战。我们研究了如何简化这样的理想系统,并且仍然在连续体中表现出quasibound状态。我们发现,面向分布式的bragg反射的悬浮的光子晶体平板实现了连续体中具有准态状态的光力学系统。在该系统中,可以消除辐射腔损失,以至于仅由材料吸收的耗散性损失占主导地位。这些建议的光力学腔设计预计将具有超过10 5的光学质量因子。
摘要:维护设备对于增加生产能力和减少生产时间至关重要。随着数字化的出现,行业能够访问大量数据,这些数据可通过实施预测性维护来确保其长期的生存能力和竞争优势。因此,本研究旨在使用来自汽车行业公司的公司的大数据来证明对机器人单元的预测维护应用。开发了一个超参数长期记忆(LSTM)模型,结果表明该模型能够以良好的精度预测失败的一天。分析了进行实际工业计划所固有的困难,并提出了改进建议。
印度尼西亚雅加达综合医院 2 印度尼西亚大学医学院内科 *通讯作者:M. Ikhsan Mokoagow,医学博士,医学硕士,理学硕士。印度尼西亚雅加达法特玛瓦蒂中央综合医院内科内分泌、代谢和糖尿病科。电子邮件:mimokoagow@gmail.com。摘要糖尿病酮症酸中毒 (DKA) 是糖尿病的急性代谢并发症。虽然它最常发生在 1 型糖尿病 (T1DM) 中,但 DKA 也可能发生在其他类型的糖尿病中。遇到 DKA 病例需要进一步评估以确定糖尿病类型并对患者进行相应治疗。通过临床方法对表现不寻常的 DKA 病例进行糖尿病类型的诊断。一名 30 岁男性因突发呼吸困难到急诊室就诊。实验室检查显示血糖水平为 506 mg/dL,血酮水平为 2.6 mmol/L,碳酸氢盐水平为 5 mEq/L。他的糖化血红蛋白为 15.3%。他之前没有被诊断出患有糖尿病。研究表明,不同类型的糖尿病的 DKA 临床和生化参数存在重叠。在采取挽救生命的治疗措施后,应进行进一步的临床和实验室评估。自身抗体滴度(即:抗谷氨酸脱羧酶、胰岛抗原 2、锌转运蛋白 8 和胰岛素的自身抗体)和 c 肽水平的测量可能有助于确定该患者的糖尿病类型。在年轻人中确诊某种类型的糖尿病可能具有挑战性。根据临床特征,该患者被推定诊断为自身免疫性糖尿病,特别是成人隐匿性自身免疫性糖尿病 (LADA)。关键词:糖尿病、糖尿病酮症酸中毒、成人隐匿性自身免疫性糖尿病、青年人
我们基于蒙特卡洛树搜索形式主义引入了一种多目标搜索算法,以进行反归结计划。多目标搜索允许将各种目标组合起来,而无需考虑其规模或加权因素。为基于这种新型算法进行基准测试,我们在八个反曲面实验中采用了四个目标。目标范围从基于起始材料和步骤计数的简单目标到基于综合复杂性和路线相似性的复杂范围。我们表明,通过仔细的复杂目标,多目标算法可以优于单目标搜索,并提供更多样化的解决方案。但是,对于许多靶标化合物,单目标设置是等效的。尽管如此,我们的算法为合成计划中的特定应用程序纳入了新的目标。
避免功能化会导致更好的原子经济以及毒性较小的反应性物种和副产品。这一切都会导致较低的SCI。尽管DAP具有明显的优势,但与其他常规途径相比,由此产生的材料表现不佳。与Stille制成的聚合物相比,直接芳基聚合物O e eN具有较低的分子量23,并且缺陷的患病率更高。24个同源物缺陷是由随后的链中重复自我的随后的单体而变化的。这是由芳基亲核试剂(AR - H)和DAP中的芳基电到(AR - BR)引起的,反应性更接近。Accordingly, the C – H bond must be su ffi ciently active to undergo reaction and prevent homocoupling of the dibrominated monomer – a side reaction also seen in Stille and Suzuki coupling despite highly orthog- onal reactivity of the monomers in those polymerization
气候变化需要大规模部署碳捕获和存储(CCS)。最近的计划表明,到2030年,CCS的容量增加了八倍,但CCS扩展的可行性却是有争议的。使用CCS和其他政策驱动技术的历史增长,我们表明,如果计划在2023年至2025年之间两倍,并且其故障率降低了一半,则CCS到2030年可能会达到0.37 GTCO 2年-1,比大多数1.5°C较低,但比大多数2°C途径更高。保持轨道至2°C将要求在2030-2040 ccs加速至少与2000年代的风力发电一样快,并且在2040年之后,它的增长速度比1970年代至1980年代的核能快。只有10%的缓解途径符合这些可行性限制,几乎所有这些途径描绘了<600 GTCO 2 2100捕获和存储。通过假设CCS计划的失败和生长的速度不如烟气脱硫的速度大约是这一数量的两倍,从而放松约束。
本文介绍了一种新型的混合企业线性编程(MILP)模型,用于在瑞典的Day-Ahead(DA)电力和频率封装储备(FCR)市场中堆叠电池储能系统(BESS)。该模型包括一个详细的日历和周期电池降低和市场技术需求建模,旨在最大程度地利用电池所有者从参与DA和三个FCR市场,正常运营(FCR-N)以及FCR(FCR-D)的潜在利润,以及进行上下调查的障碍(FCR-D)。为提出全面的结果,使用一分钟分辨率的真实数据对2022年进行连续的每日优化。模拟了五种利用模式,包括参与无FCR市场(仅DA),只有DA和FCR-N,只有DA和FCR-D上调,只有DA和FCR-D下调,以及DA和所有FCR市场。对于DA和多FCR市场的收入堆叠中的最大潜在利润可能为1MW-1MWH BESS的K€708,这是没有FCR参与情况的22倍。由多FCR市场参与导致的年度退化占电池容量损失的1.7%。考虑优化问题中的退化会使衰老减少29%,而不会对利润产生重大影响。所提出的模型可以作为评估电池操作策略和算法的盈利能力和可持续性的基准。
()国家和国际重要性的时事(i)世界和印度CII的政治和物理分裂)印度的气候与农作物(IV)运输与传播。人口统计学 - 人口普查,其特征和重要统计数据(VI)(V)印度重要的河流和湖泊。(vii)印度经济。(vii)印度文化和遗产。印度历史特别提及自由运动。cix)印度宪法 - 基本特征 - 序言,基本权利,基本职责,国家政策科学技术的指令原则。(XI)环境,生态和生物多样性。(xii)(ii)印度的税收 - 直接和间接税-CBDT,GST等。
本研究基于定量和定性分析方法构建的方法论框架,遵循 Pickering 和 Byrne (2014) 提出的步骤,进行系统的文献综述和文献收集设计,重点分析人工智能 (AI) 时代高等教育的想象未来。我们的研究旨在回答以下研究问题:(1)人工智能时代高等教育的想象未来是什么?(2)哪些因素影响高等教育教学过程与人工智能之间的联系?(3)学生和教师改进数据库和开发 ChatGPT 会产生什么影响?作者探讨了人工智能在西方世界当前大学治理安排和精神背景下的影响。深入分析与人工智能系统的出现相关的一些已确定的主要挑战、机遇和风险相一致,例如技术监控或学术界对人工智能和大型语言模型(如 ChatGPT)的普遍访问,并提出了在高等教育中明智地选择和使用人工智能解决方案进行学习和教学的论据。本研究采用的分析框架还用于总结该领域研究的新方向,以恢复大学的主导地位,提高学生、学者和公众的高等教育质量。
