摘要 皮肤是人体最大的器官,环境因素与人体皮肤的相互作用会导致一些皮肤疾病,如痤疮、牛皮癣和特应性皮炎。作为人体免疫防线的第一道防线,皮肤在人体健康中发挥着重要作用,它通过阻止受皮肤微生物群影响很大的病原体入侵。尽管人体皮肤是微生物的具有挑战性的生态位,但人体皮肤上却寄生着各种共生微生物,这些微生物塑造了皮肤环境。皮肤微生物群会影响人体健康,其失衡和菌群失调会导致皮肤疾病。本综述重点介绍了我们对皮肤微生物群及其与人体皮肤相互作用的理解进展。此外,还描述了微生物群在皮肤健康和疾病中的潜在作用,并重点介绍了一些关键物种。讨论了微生物相关皮肤病的预防、诊断和治疗策略,如健康饮食、生活方式、益生菌和益生元。讨论了使用合成生物学调节皮肤微生物群的策略,作为优化皮肤-微生物群相互作用的一个有趣途径。总之,本综述提供了有关人类皮肤微生物群恢复、人类皮肤微生物群与疾病之间的相互作用以及设计/重建人类皮肤微生物群的策略的见解。关键词:皮肤、微生物群、共生微生物、合成生物学、组学技术、宿主-皮肤微生物群相互作用、皮肤疾病、痤疮
开发一种基于人工智能 (AI) 的方法,用于检测接受 FDG-PET/CT 分期的霍奇金淋巴瘤 (HL) 患者的局灶性骨骼/骨髓摄取 (BMU)。将单独测试组的 AI 结果与独立医生的解释进行比较。使用卷积神经网络对骨骼和骨髓进行分割。AI 的训练基于 153 名未接受治疗的患者。骨摄取明显高于平均 BMU 的被标记为异常,并根据总异常摄取平方计算指数以识别局灶性摄取。指数高于预定义阈值的患者被解释为具有局灶性摄取。作为测试组,回顾性纳入了 48 名在 2017-2018 年期间接受过分期 FDG-PET/CT 且活检证实患有 HL 的未接受治疗患者。十位医生根据局灶性骨骼/BMU 对 48 例病例进行分类。在 48 例 (81%) 的局部骨骼/骨髓受累病例中,大多数医生同意 AI 的观点。医生之间的观察者间一致性为中等,Kappa 值为 0.51(范围为 0.25–0.80)。可以开发一种基于 AI 的方法来突出显示使用 FDG-PET/CT 分期的 HL 患者中的可疑局部骨骼/BMU。核医学医生之间关于局部 BMU 的观察者间一致性为中等。
本文对海浪能驱动的反渗透进行了分析。市售的海水淡化系统通过 DC/AC 转换器连接到可变 DC 电源,并改变输入电压以模拟可再生能源系统的响应。具体而言,使用了 2015 年肯尼亚基利海的波浪数据。波浪资源变化会导致波浪能转换器的估计功率输出以及波浪能驱动的海水淡化系统的估计淡水产量发生变化。对于基利海,研究了最多三个用于海水淡化的波浪能转换器。此外,还提出了一种包括太阳能和波浪能的混合系统。实验表明,反渗透海水淡化系统可以在低于额定值的功率水平下运行,但淡水流量较低。结论是,波浪能或波浪能与光伏系统相结合,可被视为海水淡化的电源,带或不带电池储存。
能源弹性是能源政策和研究的重要焦点,因为能源系统正面临越来越多的挑战,例如由于可再生能源生产增加而导致的电力短缺,以及极端天气导致的停电风险。通常,在这些情况下,能源弹性侧重于基础设施和确保电力供应不受干扰。本文提出了一个关于弹性的补充观点,以家庭为研究弹性的起点。基于对多个学科弹性的理解,我们提出了家庭能源弹性的定义,可用于探索家庭如何在电力供应不稳定的情况下确保未来生活良好。此外,我们借鉴了能源富裕环境下未来家庭能源使用的当前想法(备用能源、能源效率、灵活性和能源自给自足),以创建一个探索家庭能源弹性的框架。我们发现不同想法之间存在多样性的潜力,而这种多样性并不总是存在于主流的未来能源使用愿景中。从家庭能源弹性的角度来看,我们希望挑战电力需求不可协商的观念,并揭示支持家庭在不确定的未来变得更具弹性的机会。
本研究基于定量和定性分析方法构建的方法论框架,遵循 Pickering 和 Byrne (2014) 提出的步骤,进行系统的文献综述和文献收集设计,重点分析人工智能 (AI) 时代高等教育的想象未来。我们的研究旨在回答以下研究问题:(1)人工智能时代高等教育的想象未来是什么?(2)哪些因素影响高等教育教学过程与人工智能之间的联系?(3)学生和教师改进数据库和开发 ChatGPT 会产生什么影响?作者探讨了人工智能在西方世界当前大学治理安排和精神背景下的影响。深入分析与人工智能系统的出现相关的一些已确定的主要挑战、机遇和风险相一致,例如技术监控或学术界对人工智能和大型语言模型(如 ChatGPT)的普遍访问,并提出了在高等教育中明智地选择和使用人工智能解决方案进行学习和教学的论据。本研究采用的分析框架还用于总结该领域研究的新方向,以恢复大学的主导地位,提高学生、学者和公众的高等教育质量。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
抵抗[5]。尽管过程优化了重大的优化工作,但由PBF-LB和PBF-EB生产的316升零件仍然无法满足最佳功能性能所需的表面质量要求。据报道,由PBF-LB和PBF-EB产生的316L部分的典型表面粗糙度(RA)值分别为〜10 µm [9]和〜30 µM [10]。在PBF-LB和PBF-EB之间获得的表面粗糙度的巨大差异是无关的。在比较PBF-LB和PBF-EB时,已经报道了TI6AL4V的可比较表面粗糙度值。对于PBF-LB标本,在构建方向上测量了〜8 µm的RA,而对于PBF-EB,观察到RA为〜23 µm [11]。无论相关的AM过程如何,印刷的部分通常都需要后处理才能实现所需的表面
○ “第三种可能性可能在短短几年内出现,即当人工智能被赋予一个目标,包括或暗示维持其自身代理时,失去控制,这相当于生存目标。这可能是人类创造者有意为之,也可能是实现人类给定目标的一种手段(让人想起电影《2001:太空漫游》)。事实上,人工智能系统可能会得出结论,为了实现给定的目标,它不能被关闭。如果人类试图关闭它,可能会发生冲突。这听起来像科幻小说,但它是可靠的、真实的计算机科学。”
文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
抽象背景微生物必须对其环境变化做出反应。分析函数的鲁棒性(即性能稳定性)这种动态扰动在实验室和工业环境中都引起了极大的兴趣。最近,一种能够评估各种功能的鲁棒性的定量方法,例如在不同条件,时间范围和种群中为在96孔板中生长的微型ISM开发了各种功能的鲁棒性。在微静电板中,环境变化缓慢且未定义。动态微型单细胞培养(DMSCC)实现了微环境的精确维护和操纵,同时使用活细胞成像随着时间的推移跟踪单细胞。在这里,我们将DMSCC和鲁棒性量化方法结合在一起,以评估在几秒钟或几分钟内发生变化的性能稳定性。结果,酿酒酵母CEN.PK113-7D,具有用于细胞内ATP水平的生物传感器,暴露于葡萄糖盛宴饥饿周期,每种状况在20小时内持续1.5至48分钟。开发并应用了半自动图像和数据分析管道,以评估种群,亚种群和单细胞分辨率的各种功能的性能和鲁棒性。我们观察到特定生长速率的降低,但振荡间隔更长的细胞内ATP水平增加。持续48分钟振荡的细胞表现出最高的平均ATP含量,但随着时间的流逝,稳定性最低,在人群中的异质性最高。结论所提出的管道使随着时间的时间和种群内的动态环境中的功能稳定性进行了研究。该策略允许并行化和自动化,并且很容易适应新的生物,生物传感器,培养条件和振荡频率。对微生物对不断变化环境的反应的见解将指导应变开发和生物处理优化。关键词酿酒酵母,种群异质性,动态环境,尺度降低,生物传感器,活细胞成像,微流体单细胞培养,营养振荡