|2024 年 8 月 - 至今| 使用果蝇幼虫脑,我们打算研究 AP1 因子(JNK 通路下游调节因子)在神经胶质瘤进展中的作用。我们还打算研究这些 AP1 因子是否以及如何在巨噬细胞的肿瘤浸润中发挥作用。• 使用 StrandNGS 对丙酮丁醇梭菌 ATCC 824 进行转录组分析 - RNA-Seq 分析 2020 年 6 月 RNA-Seq 分析以找出丙酮丁醇梭菌 ATCC 824 中阿拉伯糖诱导的戊糖层次背后的现象。整个分析都是使用内部工具 StrandNGS 进行的。• 小肽作为阿尔茨海默氏症的治疗方法 - 蛋白质工程 2021 年 6 月
我们计算了R-Carvone(C 10 H 14 O),2-丁醇(C 4 H 10 O),咪唑(C 3 H 4 N 2)和2-硝基咪唑(C 3 H 3 N N 3 O 2)的电子撞击部分和总电离横截面。我们已经使用了二进制遇到的伯特(BEB)模型来获得总电子影响离子横截面(TICS)。与分子的质谱数据结合使用的修饰BEB方法用于计算与父分子分离的阳离子碎片的部分电离横截面(PICS)。我们用于R-Carvone和2-丁醇的图片数据与所有阳离子片段的实验数据以及抽动数据都非常吻合。对于咪唑和2-硝基咪唑,在本研究中首次报告了图片的估计值。我们发现,如果我们有有关所研究目标的外观能量和相对丰度数据的信息,则修改后的BEB方法和质谱依赖方法都可以有效地估算图片。
薄膜沉积、微米级图案化以及制造低应力薄膜的能力相结合,构成了表面微机械结构,其特征具有柔顺性,并且彼此或与基板紧密贴合。如果一个柔顺特征与相邻特征或基板接触,则表面之间可能会发生永久粘附。这可能发生在两个不同的时间。首先,当结构在牺牲释放蚀刻后干燥时,相邻表面毛细管状空间中截留的液体弯月面减少产生的表面张力可以将特征拉向彼此或基板 1, 2。强粘附力(在微力学中称为粘滞力)可能导致设备永久粘附,从而导致设备干燥后产量低得令人无法接受。表面也可能相互接触并在稍后的时间(例如在设备运行期间)保持粘连,从而导致可靠性故障。这两种故障中的后者可能成本更高。已经提出了各种机制来解释粘连的原因 1-6 。据报道,从冲洗液中沉淀出来的固体杂质会粘附两个表面,这是原因 1, 2 。结果表明,疏水设备之间的粘连的主要方式是通过范德华力,而范德华力和氢键都是造成亲水表面粘连的原因 3 。其他研究表明,多晶硅表面的吸附水是造成粘连的原因 4, 5 。静电吸引力也被认为是造成粘滞的原因 6 。有关粘滞力的综述,请参阅参考文献 2 和 3。已经做了大量工作来解决表面微机械结构中的粘滞故障 7-25 。除了保持无杂质的释放和冲洗工艺外,还应用了许多技术来提高产量和长期可靠性。冷冻升华是一种常用的提高产量的技术 7-11 。使用这种方法,将设备浸入溶剂(或溶剂混合物)中,然后冷冻。通过升华固化的溶剂(或溶剂混合物),可以避免液-气界面。Guckel 等人首次使用 MeOH 和 H 2 O 混合物进行冷冻升华来干燥微机械部件。7 。环己烷 8、9、叔丁醇 10 和对二氯苯 11 等溶剂也已升华以干燥设备。其他提高产量的技术包括使用光刻胶 12 或二乙烯基苯 13
使用燃料电池混合动力和全电动动力系统等新车辆技术来供应生物质原料是降低生物燃料生产成本、温室气体排放和健康影响的一种前所未有的解决方案。这些技术已在轻型车辆应用中取得成功,并正在为重型卡车开发。本研究首次对柴油、燃料电池混合动力和全电动卡车的生物质原料供应系统进行了详细的随机技术经济分析和生命周期评估,并以丁醇为代表性生物燃料确定了它们对生物燃料生产的影响。本研究发现,无论评估情况如何,包括卡车的有效载荷(满载和空载)、路面类型(碎石路和铺装路)、道路状况(正常和损坏)和道路网络(地方公路和高速公路),燃料电池混合动力卡车和全电动卡车相对于柴油卡车的能耗更低。使用分别由 H 2 燃料和可再生电力驱动的燃料电池混合动力卡车和全电动卡车,可大幅降低成本和碳足迹,特别是对于长途运输,并最大限度地减少其他经济和环境影响。虽然燃料电池混合动力电动汽车的经济优势取决于 H 2 燃料的价格和道路状况,但使用可减少每 100 公里卡车运输距离的生物丁醇温室气体排放量 0.98 至 10.9 克 CO 2e /MJ。结果表明,转换为全电动卡车运输可分别降低生物丁醇生产成本和每 100 公里卡车运输距离的温室气体排放量 0.4 至 7.3 美分/升和 0.78 至 9.1 克 CO 2e /MJ。这项研究为未来的研究奠定了基础,将指导为纤维素生物炼油厂或其他货物运输系统开发经济、社会和环境可持续的生物质原料供应系统。© 2020 Elsevier Ltd. 保留所有权利。
摘要:硅阳极需要机械强度高且电化学稳定的聚合物粘合剂体系,以适应循环操作过程中经历的剧烈体积膨胀。在此,我们报告使用聚(丙烯酸)接枝苯乙烯-丁二烯橡胶(PAA- g- SBR)和 80% 部分中和的 Na-PAA 作为硅石墨阳极的粘合剂体系。PAA- g -SBR 接枝共聚物是通过将丙烯酸叔丁酯接枝到 SBR 上并用 H 3 PO 4 处理中间体合成的。发现 PAA- g -SBR/Na-PAA 粘合剂体系比 Na-PAA/SBR 体系具有更好的电化学性能。Na-PAA/PAA- g -SBR 体系在 130 次循环中具有稳定的 673 mAh g -1 容量保持率,而 Na-PAA/SBR 体系的容量保持率立即下降。 Na-PAA/PAA- g -SBR 体系还表现出更好的机械性能,与 Na-PAA/SBR 体系相比,杨氏模量值更低,失效应变更大。总体而言,这些发现表明,在下一代锂离子电池中,硅阳极应用是一种有前途且坚固的聚合物粘合剂体系。关键词:锂离子电池、硅电极、PAA-g-SBR 聚合物、丙烯酸叔丁酯、交流阻抗、电极粘附、储能应用■ 介绍
嘌呤和嘧啶的气相色谱分析已经完成,但是它们的挥发性和热稳定性不足以从气相色谱柱中洗脱出来。在气相色谱分析之前,需要用合适的试剂进行衍生化。使用的试剂例如双(三甲基硅基)三氟乙酰胺[12-15],五氟苯甲酰氯,五氟苯磺酰氯或七氟丁酸酐[16],N,N-叔丁基二甲基硅基三氟乙酰胺[13]和N-(叔丁基二甲基硅基)N-甲基三氟乙酰胺[14]。虽然用不同的硅基试剂进行衍生化虽然有效,但需要非水介质进行衍生化。简单且廉价的试剂可以在水相中使用,可能对嘌呤和嘧啶的气相色谱测定有价值。氯甲酸乙酯已被用作水-有机相中的衍生试剂,用于气相色谱测定胺和氨基酸 [17]。Husek 报道了氯甲酸酯作为气相色谱通用试剂的应用 [18],Simek 和 Husek 报道了烷基氯甲酸酯作为酯化试剂的应用 [19]。已经使用氯甲酸酯对多种氨基化合物进行了气相色谱分析 [20]。
抗菌基因座 异烟肼 katG 、furA-katG 启动子、mabA 、inhA 、mabA-inhA 启动子、oxyR-ahpC 启动子 利福平 rpoB 吡嗪酰胺 pncA 启动子 乙胺丁醇 embB 、embC-A 启动子 氟喹诺酮类 gyrA 、gyrB 链霉素 rrs、rpsL 卡那霉素 eis 启动子、rrs 阿米卡星 rrs 乙硫异烟胺 ethA
丙酮是脂肪酸代谢的产物。血液和尿丙酮水平不仅受到脂肪酸氧化增加的所有情况(禁食、饮酒、长时间运动、暴露于寒冷)的影响,而且还受到某些病理状况(尿丙酮水平高达 30 的糖尿病)的影响。毫克/升)。在孕妇和接受双硫仑治疗的患者中,它们也可能高于一般非职业暴露人群。丙酮也是异丙醇(或2-丙醇)和丁醇的代谢产物之一。