建立了工作流程后,我们随后使用脉冲激光诱导冲击波法将 RNP 直接递送到完整的烟草叶片细胞中,这比原生质体或受精卵更容易制备和处理。我们引入了一个预组装的 RNP,它包含 HiFi Cas9 蛋白、crispr RNA (crRNA) 和 ATTO-550 标记的反式激活 crispr RNA (tracrRNA),靶向烟草 PDS 或 ADF 基因。荧光 tracrRNA 允许直接筛选转染细胞,因此不需要选择标记基因(图 2A')。样本大小和实验设置与上面描述的 DsRed 转染相同(图 1A、B)。根据我们的观察,ATTO-550 荧光在激光处理后 24 小时开始变得可见,在转染后 48 小时达到最大值。根据制造商的说法,RNP 复合物的活性最长为 72 小时。
从受精卵开始,细胞不断增殖,将其基因组信息传递给后代,并动态改变其功能以形成不同的组织结构。在整个发育过程中,细胞内和环境线索触发基因表达模式,控制细胞状态转换并产生进一步的细胞和环境线索,导致细胞在空间不同区域自组织成功能簇。如何研究这些过程?可以通过各种组学技术获得细胞的高分辨率分子快照,但这些技术需要破坏样本,这妨碍了随时间推移的分析。使用荧光探针的活细胞成像可以分析时间过程动态,但仅限于少数分子或细胞。这些挑战可以通过 DNA 事件记录来克服,其中分子和细胞信息逐渐存储在多细胞生物体内细胞的合成“DNA 磁带”中,并且存储的信息可以通过高通量 DNA 测序访问。然而,需要克服一些技术限制。
靶序列,并使用 PrimeSTAR Max(TaKaRa,日本草津)的寡核苷酸和引物 sgRNA-RV 从 pDR274 载体 26 进行 PCR 扩增 sgRNA 模板,并使用 NucleoSpin 凝胶和 PCR 清理试剂盒(MACHEREY-NAGEL,德国迪伦)进行纯化。使用 CUGA7 gRNA 合成试剂盒(日本东京 Nippon Gene)合成 sgRNA,并使用 NanoDrop Lite 分光光度计(美国马萨诸塞州沃尔瑟姆 Thermo Fisher Scientific)测量其浓度。注射溶液由无 RNase 水中三种 sgRNA(每种 20 pg)、Cas9 蛋白(1 nM,M0646,美国马萨诸塞州新英格兰生物实验室)和酚红(P0290,Sigma-Aldrich)组成。将该溶液注射到1细胞期受精卵或4细胞期胚胎的细胞体中,产生遗传嵌合体,并
基因驱动器被引入受精卵,在 Cas9、引导 RNA 和细胞修复系统的帮助下,被插入染色体中的特定位置。经过修改的染色体包含构成基因驱动器的 DNA 序列,并能表达 Cas9 酶和引导 RNA。时间和频率由发起人的选择决定。当被修饰的染色体上的基因表达时,就会导致另一条染色体(在同一染色体对中)在相应的位置被切割。 DNA分子中的两条DNA链都被切断,导致细胞启动复杂的修复过程。包含基因驱动基因(包括所需基因)的修改后的染色体现在充当切割染色体的模板,从而将构成基因驱动基因的基因复制到染色体对中的另一个染色体上。这一过程可与减数分裂过程中发生的交叉过程进行比较。
转基因依赖于使用大型复杂的表达载体,在病毒或组织特异性哺乳动物启动子的控制下,通过显微注射将载体递送到原核阶段受精卵中,从而指导互补 DNA (cDNA) 的表达(图 1)。虽然这种方法提供了一种粗略但有效的方法来设计表达报告基因、基因突变形式和条件调控基因的动物模型,但它不能用于精确修改内源基因。此外,转基因在小鼠基因组内的整合是随机发生的,整合位点的位置以及整合的次数可能会影响转基因的表达。此外,如果转基因整合破坏了基因或转录调控元件,整合位点本身可能会诱导其自身的表型。由于转基因整合位点和转基因整合次数可能因小鼠而异,因此需要扩展多个创始者并检查转基因表达水平和由此产生的表型 [1]。
时机是这项研究的目标之一,就是在受精后立即编辑早期胚胎,以避免一种称为遗传镶嵌的疾病。当两个或多个具有不同基因型的细胞中存在于单个受精卵中发展的个体中时,就会发生镶嵌。这通常发生在胚胎开始在第一个细胞分裂之前复制自己的DNA时进行编辑时。为了避免在这项研究中避免镶嵌性,在授精后六个小时以及在DNA合成开始之前,将指南,供体和Cas9蛋白质编辑摄入被引入牛胚胎中。对于希望将基因插入胚胎插入基因的研究人员的挑战之一是逃避细胞的主要DNA修复途径。在胚胎发育的早期阶段,修复倾向于通过NHEJ途径,而HDR编辑效率在早期胚胎中非常低。
肌生长抑制素 (MSTN) 是一种众所周知的肌肉生长负调节剂。由 MSTN 自然功能丧失突变引起的双肌羊具有非常强的骨骼肌。在这项研究中,我们的结果表明,通过使用 Cas9 技术特异性靶向外显子 1 位点,成功生成了 MSTN 突变羊。我们研究中的 MSTN 敲除羊的肌肉显著增加,就像双肌表型一样。我们的研究表明,将 Cas9:sgRNA 直接注射到受精卵中可广泛用于在大型家畜中产生基因敲除。值得注意的是,根据我们的研究结果,绵羊可以加入到现在越来越实用的基因组编辑物种名单中。MSTN 突变羊的生成对于当地绵羊品种的遗传改良以及将绵羊用作大型动物医学研究的模型具有重要意义。
发育生物学旨在了解单个细胞(受精卵)生成高度组织化的有机体的复杂调控过程。揭示这些过程本质的最有效方法是实时跟踪单个细胞和细胞谱系。成像设备、荧光标签和计算工具的最新进展使得对细胞和胚胎进行长期多色成像成为可能。然而,实现哺乳动物胚胎的实时成像仍面临一个重大挑战——生成携带报告基因的胚胎,以重现标记基因的内源性表达模式。基因组编辑技术的最新发展在实现高效生成报告小鼠模型方面发挥了重要作用。这篇简短的评论讨论了高效生成敲入报告小鼠的技术的最新发展以及这些模型在实时成像开发中的应用。随着这些发展,我们开始实现长期寻求的实时分析哺乳动物发育的前景。
过去、现在和未来的流感疫苗 1931 年,Shope 报告发现了猪流感的病原体 (Shope 1931),随后 Smith 等人于 1933 年很快发现了人流感病毒 (Smith 等人 1933)。1931 年,Woodruff 和 Goodpasture 取得了另一项重大病毒学突破,他们记录了一种利用受精鸡胚培养病毒的方法 (Goodpasture 等人 1931)。1936 年,Smorodintseff 使用受精卵开发出第一种减毒流感病毒疫苗,不久之后,Francis 和 Salk 进一步完善了这种方法 (Francis 和 Salk 1942)。值得注意的是,索尔克于 1952 年开发出有效的脊髓灰质炎疫苗,这得益于他在流感疫苗研究方面的经验。第一种基于鸡蛋的流感疫苗于 1945 年获得许可,令人惊讶的是,它至今仍是
单细胞(受精卵)发育成由数百万个细胞组成的动物是生物学中最令人惊奇的现象之一。几千年来,它一直激励着科学家。本模块将考虑动物发育背后的细胞和分子事件,借鉴一系列脊椎动物和无脊椎动物模型生物(包括线虫、果蝇、海胆、斑马鱼、青蛙和小鸡)的例子。它旨在将学生对发育生物学的知识和理解提升到当前研究的水平。主题将包括轴形成、原肠胚形成、神经诱导、神经系统模式、神经嵴、基因调控网络、左右不对称、昼夜节律钟、眼睛发育、干细胞、小鼠胚胎的转基因、线虫和苍蝇早期发育的遗传研究。该模块(CELL0002)的 30 学分版本还将包括 5-6 个实验室实践(例如果蝇、非洲爪蟾、斑马鱼、小鸡、哺乳动物、秀丽隐杆线虫)。