颁奖典礼 2023年度研究组优秀奖将颁发给2023年4月至2024年3月期间举行的日本人工智能学会年会上发表的特别优秀的研究论文。 住电株式会社通过其特殊子公司住电Friend株式会社(以下简称“Friend”),主要推进残疾人士的就业。 在本文中,我们报告了与 Friend 合作应用“残疾人参与式主动学习”的案例研究。我们已通知弗兰德的员工,他们的工作迄今为止主要集中在办公室支持任务上,他们将能够通过创建评估我们主要产品(如电线和电缆)的人工智能直接参与设计和质量评估过程。 颁发此奖是为了认可该项目在考虑“未来社会的人工智能”方面的重要性,将其作为创造一个让更多残障人士能够在公司各种任务中发挥积极作用的环境以及有效利用深度学习技术的一项新举措。欲了解更多详细信息,请参阅以下论文。 ■ 使用残疾人参与式主动学习方案对电线电缆产品进行线路追踪和详细质量评估 https://www.jstage.jst.go.jp/article/jsaisigtwo/2023/SAI-048/2023_01/_pdf/- char/ja
本次演讲的目的有两个。1) 通过介绍社会接受度和类似概念的概念分析和分类,促进人工智能技术等需要跨学科和跨学科研究的领域的合作与交流。2) 引入这种分类将澄清在 ELSI 和社会接受度讨论中可能没有被忽视的道德问题。为此,我们介绍了 Benham Taebi 对社会接受度和道德可接受度概念的区分,并开发了该区分的修改版本。通过在可接受度概念中引入经济和技术层面以及道德领域,可以澄清可接受度领域之间的冲突。这种澄清使人们能够更详细地讨论人工智能的道德问题。
截止日期前 4 天 - 成功的竞标者将是团队设定的估计价格范围内提供最低出价的竞标者。但是,如果投标价格在预算、结算和会计命令(1949 年帝国法令第 165 号)第 85 条范围内...
12 Riverside Dr (lot 2b) 和 14 Riverside Dr (lot 2c Atlantic Richfield Company Dba Arco Metals Company 财产转让 – 表格 III 补救措施已完成 2009 年 12 月 30 日 2017 年 2 月 27 日 否
我们想为您提供有关狂犬病疫苗 (品牌名称为 )VERORAB() 的配制和给药说明的说明。卫生部 (DOH) 采购了单剂量 Verorab 疫苗的包装。每个包装(盒)包含一瓶单剂量冻干疫苗粉 + 1 个 0.5 毫升稀释剂的预充注射器。根据制造商的建议,)VERORAB( 通过肌肉注射途径给药。有些 (VERORAB) 批次配有稀释剂预充注射器,其固定针头为 5/8 英寸(16 毫米),不适合肌肉注射,因此,医疗保健专业人员应仅遵循以下配制和给药说明,适用于配有稀释剂预充注射器的 (VERORAB) 批次,其固定针头为 5/8 英寸(16 毫米): 配制:- 提供的带固定针头的稀释剂预充注射器仅用于疫苗配制。 给药:- 一种新的必须使用无菌注射器和针头抽取稀释的疫苗并给人体注射疫苗。 - 用于肌肉注射疫苗的针头长度应根据良好的疫苗接种规范适应人的年龄和体重。更多详情请参阅(附录 1)。
DOI: 10.7498/aps.71.140101 类脑计算技术作为一种脑启发的新型计算技术 , 具有存算一体、事件驱动、模拟并行等特征 , 为 智能化时代开发高效的计算硬件提供了技术参考 , 有望解决当前人工智能硬件在能耗和算力方面的 “ 不可持续发展 ” 问题 . 硬件模拟神经元和突触功能是发展类脑计算技术的核心 , 而支持这一切实现 的基础是器件以及器件中的物理电子学 . 根据类脑单元实现的物理基础 , 当前类脑芯片主要可以分 为数字 CMOS 型、数模混合 CMOS 型以及新原理器件型三大类 . IBM 的 TrueNorth 、 Intel 的 Loihi 、清华大学的 Tianjic 以及浙江大学的 Darwin 等都是数字 CMOS 型类脑芯片的典型代表 , 旨 在以逻辑门电路仿真实现生物单元的行为 . 数模混合型的基本思想是利用亚阈值模拟电路模拟生物 神经单元的特性 , 最早由 Carver Mead 提出 , 其成功案例有苏黎世的 ROLLs 、斯坦福的 Neurogrid 等 . 以上两种类型的类脑芯片虽然实现方式上有所不同 , 但共同之处在于都是利用了硅基晶体管的 物理特性 . 此外 , 以忆阻器为代表的新原理器件为构建非硅基类脑芯片提供了新的物理基础 . 它们 在工作过程中引入了离子动力学特性 , 从结构和工作机制上与生物单元都具有很高的相似性 , 近年 来受到国内外产业界和学术界的广泛关注 . 鉴于硅基工艺比较成熟 , 当前硅基物理特性是类脑芯片 实现的主要基础 . 忆阻器等新原理器件的类脑计算技术尚处于前沿探索和开拓阶段 , 还需要更成熟 的制备技术、更完善的系统框架和电路设计以及更高效的算法等 .
因此,跨个体、跨场景的脑电分析方法逐渐成为研究热点。越来越多的研究人员将广泛应用脑 电信号分析的特征于跨个体、跨场景的脑电信号分析研究中。 Touryan 等人采用经典的独立成分分 析的特征分析方法描述特征空间,计算功率谱密度( Power Spectral Density , PSD ),并采用顺序 前向浮动选择方法识别频谱特征中的独立成分集,结果表明该方法可以识别出跨场景脑电信号中的 共同成分 [88] 。 Kakkos 等人采用了特征融合的方法,将 PSD 与功能连接特征相结合,提高了跨场景 分类的性能,并证明了脑特征融合在跨场景中的应用更为有效 [89] 。 Xing 等人将模糊熵特征用于跨 场景脑电信号分析,发现模糊熵特征相对于其他特征更能适合跨场景 [90] 。卷积神经网络 ( Convolutional Neural Networks , CNN )和递归神经网络( Recurrent Neural Networks , RNN )等基 于深度学习的新型跨任务模型在跨场景脑电分析中展现了巨大潜力。这些模型能够自动提取特征和 学习复杂的脑电特征,从而有效地缩小不同任务和场景之间的差距,提高模型的泛化能力 [91][92][93] 。 近年来,一些跨学科的方法被创新性地应用于跨场景研究, Zhao 等人提出了一种跨学科的对齐多 源域自适应方法,用于跨个体的 EEG 疲劳状态评估,显著提高了模型的泛化能力 [94] , Zhou 等人在 此基础上进行改进,提出了一种跨任务域自适应方法,有效提升了跨场景认知诊断的性能 [95] 。