尽管Vision Transformer(VIT)在计算机视觉方面取得了显着的成功,但由于缺乏内部绘制互动和特征量表的多样性有限,它在密集的预测任务中表现不佳。大多数现有的研究致力于设计视觉特定的变压器来解决上述问题,从而涉及额外的培训前成本。因此,我们提出了一种普通的,无培训的且具有特征增强的vit背骨,并具有指定性的特征性动作,称为Vit-Comer,可促进CNN和Transformer之间的双向相互作用。与现状相比,VIT-COMER具有以下优点:(1)我们将空间金字塔多触发性场卷积特征注入VIT体系结构,从而有效地减轻了VIT中局部信息相互作用和单场表述的有限问题。(2)我们提出了一个简单有效的CNN转换器双向交互模块,该模块在跨层次特征上执行多尺度融合,这对Han-dling密集的预测任务有益。(3)我们评估了在各种密集的预测任务,不同框架和多个高级预训练中VIT-COMER的能力。值得注意的是,我们的VIT-COMER-L在没有额外训练数据的情况下可可Val2017上的AP达到64.3%,而ADE20K Val上的MIOU为62.1%,这两种方法都与最先进的方法相当。我们希望VIT-COMER可以作为密集预测任务的新骨干,以促进未来的研究。该代码将在https://github.com/traffic-x/vit-comer上发布。
视觉 - 语言变压器(VLT)最近显示出巨大的成功,但同时伴随着大量的计算成本,其中主要原因可以归因于大量的视觉和语言令牌。存在用于压缩VLTS的令牌修剪研究主要遵循基于单模式的方案,但忽略了对齐不同模态来指导令牌修剪过程的关键作用,从而导致重要的代币在另一个模态分支中错误地修剪一个模态。同时,现有的VLT修剪作品也缺乏基于不同输入样本动态压缩每一层的灵活性。为此,我们提出了一个名为M Ultodal的新颖框架,用于加速变化VLT的木质制成d ynamic t ynamic t oken p Runing(MADTP)。具体来说,我们首先引入了精心设计的多模式对齐指导(MAG)模块,该模块可以使相同语义概念的特征与不同的模式相结合,以确保修剪的代币对所有模式都不太重要。我们进一步设计了一种新型的dy-namic令牌修剪(DTP)模块,该模块可以根据不同的输入实例自适应地调节每个层中的令牌压缩比。对各种基准测试的广泛实验表明,MADTP可以显着确定多种模型的计算复杂性,同时保留竞争性能。值得注意的是,当将MADTP应用于NLVR2数据集中的BLIP模型时,可以将GFLOPS降低80%,而性能降低少于4%。该代码可在https://github.com/double125/madtp上找到。
摘要 — 在三相四线低压配电系统中,不平衡负载会导致中性电流 (NC) 形成环路,从而导致功率损耗增加和中性电位变化。与传统电力变压器相比,智能变压器 (ST) 具有严格的电流限制以避免过流。然而,其在下游低压电网电压调节方面的优势可以提供调节过度 NC 的能力。本文提出了一种闭环 NC 优化控制,一方面,在满足标准 EN 50160 要求的正常运行中最小化 NC 电流,另一方面,在极端情况下抑制 NC 电流以避免 ST 过流损坏。根据曼彻斯特地区三相四线配电网,通过硬件在环设置和基于不平衡负载曲线下的 350kVA、10kV/400V、ST 供电配电网的案例研究,通过实验测试验证了所提出的控制策略。结果清楚地证明了所提出的NC优化控制策略对NC抑制和最小化的有效性和灵活性。
最近,有效的视觉变压器表现出出色的性能,并且在资源受限的范围内延迟较低。通常,他们在宏观水平上使用4×4贴片嵌入式和4阶段结构,同时在微观级别利用多头配置的同时注意力。本文旨在解决记忆效率高的人中所有设计级别的计算重复。我们发现,使用较大的修补茎不仅降低了内存访问成本,而且还通过利用令牌表示,从早期阶段降低了空间冗余,从而实现了态度性能。fur-hoverore,我们的初步分析表明,在早期阶段的注意力层可以用会议代替,并且后期阶段的几个注意力头在计算上是多余的。为了处理这一点,我们介绍了一个单头注意模块,该模块固有地预先预先冗余,并同时通过相结合的全局和本地信息来提高准确性。在解决方案的基础上,我们引入了Shvit,这是一种单头视觉变压器,获得了最先进的速度准确性权衡。例如,在ImagEnet-1k上,我们的SHVIT-S4在GPU,CPU和iPhone12移动设备上比MobileVitV2×1.0快3.3×,8.1×和2.4倍,而同时更准确。用于使用Mask-RCNN头对MS Coco进行的对象检测和实例分割,我们的模型分别在GPU和移动设备上表现出3.8×和2.0×下骨架潜伏期时,可以与FastVit-SA12进行比较。
在这项工作中,我们提出了一种新颖的歧视性框架,用于灵巧的掌握生成,称为d外部g rasp tr ansformer(dgtr),能够通过仅使用一个向前的通行方式处理对象点云来预测一组可行的抓握姿势。我们将敏捷的掌握生成作为设定的预测任务,并为其设计一个基于变压器的握把模型。但是,我们确定此设置的预测范式在灵活的掌握领域遇到了几种优化的挑战,并导致限制性能。为了解决这些问题,我们提出了培训和测试阶段的渐进策略。首先,提出了动态静态匹配训练(DSMT)策略,以增强训练阶段的光学稳定性。第二,我们使用一对对抗性损失来实现对抗平衡的测试时间适应(ABTTA),以提高测试阶段的掌握质量。dexgraspnet数据集的实验结果证明了DGTR可以预测具有高质量和多样性的灵活掌握姿势的能力。值得注意的是,在保持质量高的同时,DGTR Sigsigs所预测的Grasp的多样性明显优于先前的多个指标,而没有任何数据预处理。代码可在https://github.com/isee-laboratory/dgtr上找到。
摘要。近年来,自然语言处理领域(NLP)发生了一场革命,文字一代在这一转变中起着关键作用。这种转变不仅限于技术领域,而且还无缝渗透了创意领域,一个很好的例子是歌曲歌词的一代。真正有效的生成模型,例如生成训练的预训练变压器(GPT)-2,需要进行微调作为关键步骤。本文利用了广泛参考的Kaggle数据集的鲁棒性,标题为“歌曲歌词”,仔细探讨了调节三个关键参数的影响:学习率,批处理大小和序列长度。数据集提出了一个引人入胜的叙述,该叙述将学习率视为最有影响力的决定因素,直接影响了产生的歌词的质量和连贯性。在增加批处理大小和扩展序列长度有望增强模型性能的同时,很明显,还有一个饱和点,超出该点的效果受到限制。通过此探索,本文旨在揭开模型校准的复杂世界,并强调战略参数选择在追求抒情卓越方面的重要性。
心电图(ECG)是一种捕获心脏活动的电测量,是诊断心血管疾病(CVD)的金标准。但是,由于ECG需要使用用户参与,因此不可避免地进行心脏监测。相比之下,光电学(PPG)提供了易于收集的数据,但其精度有限限制了其临床用法。为了确定这两个信号的优势,最近的研究不适合将PPG信号重新构成到ECG的各种深度学习技术;但是,缺乏文本信息以及降低噪声生物医学信号的能力最终会限制模型的影响。在这项研究中,我们提出了一种基于变压器的新型体系结构,可从PPG重建ECG,并将PPG和重建的ECG与CVD检测的多种方式相结合。此方法是第一次在生物医学波形重构上进行了变压器序列到序列转换,并结合了PPG和ECG的优势。我们还创建了基于斑块的注意(SPA),这是一种效率方法,用于编码/解码生物医学波形。通过获取各种序列长度并捕获交叉点连接,SPA最大程度地提高了本地特征和全局上下文反复的信号操作。所提出的体系结构在BIDMC数据库上生成了0.29 RMSE的状态性能,以重新构建PPG到ECG,超过了先前的研究。我们还在模拟III数据集上评估了该模型,在CVD检测中达到了95.9%的精度,并在PPG-BP数据集中评估了该模型,在相关的CVD糖尿病检测中达到了75.9%的精度,表明其一般能力。作为一种概念证明,一种名为Pearl(原型)的耳环可穿戴式可穿戴,旨在扩大护理点(POC)医疗保健系统。
LIDAR UPSMPLING对于机器人和自动驾驶汽车的启示系统来说是一项艰巨的任务,这是由于大型场景的稀疏结构稀疏和不规则的结构。最近的作品建议通过将LIDAR数据从3D欧几里得空间传播到2D图像空间中的一个超级分辨率问题来解决此问题。尽管他们的方法可以生成具有细粒细节的高分辨率范围图像,但由此产生的3D点云是10个模糊细节并预测无效的点。在此pa-per中,我们提出了郁金香,这是一种从低分辨率激光雷达输入中重建高分辨率激光圈云的新方法。我们还遵循一种基于图像的方法,但特定地修改了基于Swin-Transformer网络的贴片和窗口几何形状,以更好地拟合范围图像的特性。我们在三个公共现实世界和模拟数据集上进行了几项实验。郁金香在所有相关指标中都优于最先进的方法,并且比以前的工作生成了强大,更现实的点云。该代码可在https://github.com/ethz-asl/tulip.git上找到。
摘要 - 脑肿瘤诊断是一项具有挑战性的任务,但对于计划治疗以停止或减慢肿瘤的生长至关重要。在过去的十年中,卷积神经网络(CNN)在医学图像中肿瘤的自动分割中的高性能急剧增加。最近,与CNN相比,视觉变压器(VIT)已成为医学成像的稳健性和效率的核心重点。在本文中,我们提出了一个新颖的3D变压器,称为3D catbrats,用于基于最先进的SWIN变压器的磁共振图像(MRIS),用于使用残留块和通道注意模块的最先进的SWIN变压器进行磁共振图像(MRI)。在Brats 2021数据集上评估了所提出的方法,并实现了在验证阶段超过当前最新方法的平均骰子相似性系数(DSC)的定量度量。索引项 - CNN,变形金刚,VIT,语义段