摘要:量子化学是噪声中型量子 (NISQ) 设备的一个有前途的应用。然而,量子计算机迄今为止尚未成功解决具有真正科学意义的问题,算法的进步对于充分利用当今可用的普通 NISQ 机器来说是必不可少的。我们讨论了一种基于将分子汉密尔顿量划分为两部分的基态能量估计方法:一部分是非上下文的,可以用经典方法求解,另一部分是上下文分量,可通过变分量子特征求解器 (VQE) 程序获得量子校正。这种方法被称为上下文子空间 VQE (CS-VQE);然而,在将其部署到 NISQ 设备上之前,还有一些障碍需要克服。我们在这里解决的问题是 ansatz,即我们在 VQE 期间对其进行优化的参数化量子态;最初并不清楚汉密尔顿量的分裂应如何反映在 CS-VQE ansa ̈ tze 中。我们提出了一种“非上下文投影”方法,该方法由稳定器形式中 CS-VQE 的重新表述所阐明。这定义了从完整电子结构问题到上下文子空间的假设限制,并促进了可在 NISQ 设备上部署的 CS-VQE 的实现。我们使用量子模拟器验证了非上下文投影假设,并展示了一组小分子的化学精确基态能量计算,同时显著减少了所需的量子比特数和电路深度。
试图在大型系统上达到完全精确度显然面临着所谓的“指数墙”,这限制了最精确方法对更复杂的化学系统的适用性。到目前为止,用经典超级计算机执行的最大计算量也只包括数百亿个行列式 4 ,有 20 个电子和 20 个轨道,随着大规模并行超级计算机架构的进步,希望在不久的将来解决接近一万亿个行列式(24 个电子、24 个轨道)的问题。5 鉴于这些限制,必须使用其他类别的方法来近似更大的多电子系统的基态波函数。它们包括:(i) 密度泛函理论 (DFT),它依赖于单个斯莱特行列式的使用,并且已被证明非常成功,但无法描述强关联系统 6 – 8 ; (ii) 后 Hartree - Fock 方法,例如截断耦合团簇 (CC) 和组态相互作用 (CI) 方法,即使在单个 Slater 行列式之外仍然可以操作,但由于大尺寸分子在 Slater 行列式方面的计算要求极高,因此不能应用于大尺寸分子。9 – 16 一个很好的例子是“黄金标准”方法,表示为耦合团簇单、双和微扰三重激发 CCSD(T)。事实上,CCSD(T) 能够处理几千个基函数,但代价是巨大的运算次数,而这受到大量数据存储要求的限制。17 无论选择哪种化学基组(STO-3G、6-31G、cc-pVDZ、超越等),这些方法都不足以对大分子得出足够准确的结果。 Feynman 18,19 提出的一种范式转变是使用量子计算机来模拟量子系统。这促使社区使用量子计算机来解决量子化学波函数问题。直观地说,优势来自于量子计算机可以比传统计算机处理“指数级”更多的信息。20 最近的评论提供了有关开发专用于量子化学的量子算法的策略的背景材料。这些方法包括量子相位估计(QPE)、变分量子特征值求解器(VQE)或量子虚时间演化(QITE)等技术。21 – 24 所有方法通常包括三个关键步骤:(i)将费米子汉密尔顿量和波函数转换为量子位表示;(ii)构建具有一和两量子位量子门的电路;(iii)使用电路生成相关波函数并测量给定汉密尔顿量的期望值。重要的是,目前可用的量子计算机仍然处于嘈杂的中型量子(NISQ)时代,并且受到两个主要资源的限制:
我们提出了元变分量子本征求解器 (VQE),这是一种能够学习参数化汉密尔顿量的基态能量分布的算法。如果使用几个数据点训练元 VQE,它将提供初始电路参数化,可用于计算特定信任区域内汉密尔顿量的任何参数化的基态能量。我们使用 XXZ 自旋链、电子 H 4 汉密尔顿量和单传输量子模拟测试该算法。在所有情况下,元 VQE 都能够学习能量函数的形状,在某些情况下,与单个 VQE 优化相比,它可以提高准确性。元 VQE 算法在优化数量方面提高了参数化汉密尔顿量的效率,并为单个优化的量子电路参数提供了良好的起点。所提出的算法可以很容易地与变分算法领域的其他改进相结合,以缩短当前最先进技术与具有量子优势的应用之间的距离。
量子算法已经发展成为高效解决线性代数任务的算法。然而,它们通常需要深度电路,因此需要通用容错量子计算机。在这项工作中,我们提出了适用于有噪声的中型量子设备的线性代数任务变分算法。我们表明,线性方程组和矩阵向量乘法的解可以转化为构造的汉密尔顿量的基态。基于变分量子算法,我们引入了汉密尔顿量变形和自适应分析,以高效地找到基态,并展示了解决方案的验证。我们的算法特别适用于具有稀疏矩阵的线性代数问题,并在机器学习和优化问题中有着广泛的应用。矩阵乘法算法也可用于汉密尔顿量模拟和开放系统模拟。我们通过求解线性方程组的数值模拟来评估算法的成本和有效性。我们在 IBM 量子云设备上实现了该算法,解决方案保真度高达 99.95%。2021 中国科学出版社。由 Elsevier BV 和中国科学出版社出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
奇异价值分解对于工程和科学领域的许多问题至关重要。已经提出了几种量子算法来确定给定基质的奇异值及其相关的奇异向量。尽管这些算法是有希望的,但是在近期量子设备上,所需的量子子例程和资源太昂贵了。在这项工作中,我们提出了一种用于奇异值分解(VQSVD)的变分量子算法。通过利用奇异值的变异原理和ky fan定理,我们设计了一种新型的损失函数,以便可以训练两个量子神经网络(或参数化的量子电路)来学习奇异向量并输出相应的奇异值。更重要的是,我们对随机矩阵进行VQSVD的数值模拟以及其在手写数字的图像压缩中的应用。最后,我们讨论了算法在推荐系统和极地分解中的应用。我们的工作探讨了仅适用于Hermitian数据的量子信息处理的新途径,并揭示了矩阵分解在近期量子设备上的能力。
摘要:椎间盘 (IVD) 退化可引起慢性下腰痛 (LBP),从而导致残疾。尽管在治疗椎间盘源性 LBP 方面取得了重大进展,但当前治疗的局限性引发了人们对生物方法的兴趣,包括生长因子和干细胞注射,作为因 IVD 退化 (IVDD) 导致慢性 LBP 患者的新治疗选择。基因疗法为 IVDD 治疗带来了令人兴奋的新可能性,但治疗仍处于起步阶段。使用 PubMed 和 Google Scholar 进行文献检索,以概述 IVDD 基因治疗的原理和现状。回顾了体外和动物模型中基因向退化椎间盘细胞的转移。此外,本综述描述了 RNA 干扰 (RNAi) 基因沉默和成簇规律间隔短回文重复序列 (CRISPR) 系统基因编辑以及哺乳动物雷帕霉素靶 (mTOR) 信号在体外和动物模型中的应用。近年来重大的技术进步为新一代椎间盘内基因治疗慢性椎间盘源性腰痛打开了大门。