摘要 - 机器人辅助手术中的许多任务需要计划和控制操纵器与高度变形对象相互作用的动作。这项研究提出了一种基于位置动力学(PBD)模拟的现实,时界的模拟器,该模拟器模拟了由于导管插入术前术前计划计划和钥匙孔外科手术程序内的术中指导而导致的大脑变形。它通过考虑变形模型,嘈杂的感应和不可预测的驱动中的不确定性来最大化成功的可能性。PBD变形参数是在平行p的模拟幻影上初始化的,以获得对脑白质的合理起始猜测。通过比较所获得的位移与复合水凝胶幻像中导管插入的变形数据进行校准。知道灰质大脑结构的不同行为,对参数进行了细小的调整以获得广义的人脑模型。将大脑结构的平均位移与文献中的值进行了比较。模拟器的数值模型对文献采用了一种新颖的方法,并且通过使用记录的Vivo动物试验的记录变形数据,平均不匹配为4.73±2.15%,它已被证明与实际脑变形密切相匹配。稳定性,准确性和实时性能使该模型适合为KN路径计划,术前路径计划和术中指导创建动态环境。
DEPC (MN) 037 高温压缩试件的微观结构映射 - 通过电子背散射衍射进行晶粒尺寸计量摘要电子背散射衍射 (EBSD) 越来越多地被用于通过映射试件截面的晶体学取向来表征许多工程材料的微观结构。这些晶体学信息传统上用于揭示详细的相和纹理信息,但它也可以提供有关晶粒尺寸和相关参数的大量信息。这些参数有时被视为直接光学技术的简单测量值。然而,EBSD 的自动化特性意味着它可以提供更多信息,而不受个别操作员的技能和主观性的影响,例如在设置样品照明以进行自动图像分析时。虽然 EBSD 可以自动化晶粒尺寸测量过程,但在样品制备、操作条件的选择和使用采集后降噪方面仍需小心。本文报告了这些对测量晶粒尺寸影响的实际例子,并将 EBSD 结果与光学结果进行了比较,突出了 EBSD 在检测较小晶粒和检测孪晶界时更高的分辨率所产生的影响。本文讨论了报告结果的方式,并将结果与晶粒尺寸分布的理论预测进行了比较。这项工作是在需要量化微观结构异质性的更广泛背景下进行的,以便验证工程合金热变形的变形模型,这是与谢菲尔德大学和威尔士大学(斯旺西)联合项目的一部分。KP Mingard、EG Bennett、AJ Ive 和 B Roebuck 2006 年 1 月
第二版延续了作者的尝试,以合理、简明的理论发展、众多当代应用和启发性的数字来介绍线性弹性,以帮助理解解决方案。除了纠正印刷错误外,还增加了几个新项目。也许最重要的新增内容是关于非均匀弹性的新章节,这是现有弹性教科书中很少见到的主题。在过去的几十年里,这一领域引起了相当大的关注,工程界对使用功能梯度材料的兴趣。新的第 14 章包含基本的理论公式和最近出现在文献中的几个应用问题。还增加了一个涵盖材料力学回顾的新附录,这将有助于使教材更加独立,让学生可以根据需要复习适当的本科材料。第二版增加了近 100 个新练习,分布在大多数章节中。这些问题应该为教师提供许多新的家庭作业、考试或课堂讨论材料选择。其他新增内容包括关于曲线各向异性问题的新章节和关于复合材料界面边界条件的扩展讨论。在线解决方案手册已更新和更正,并包含本书所有练习的解决方案。这个新版本再次是我在教授弹性理论的两门课程时使用的讲义的产物。第一部分主要针对第一门课程而设计,通常由来自各种工程学科的研究生新生选修。第一门课程的目的是向学生介绍理论和公式,并提出一些基本问题的解决方案。通过这种方式,学生将了解更基本的弹性变形模型如何以及为什么应该取代基本的材料强度分析。第一门课程还为固体力学相关领域的更高级研究奠定了基础。第二部分中包含的更高级材料通常用于二年级和三年级学生的第二门课程。但是,第二部分的某些部分也可以轻松地集成到第一门课程中。我为什么要在弹性领域再写一篇文章?多年来,我曾在美国几所工程学校、相关行业和一家政府机构教授这方面的材料。在此期间,基本理论基本保持不变;然而,
中央航空发动机工程研究所(CIAM)成立于1930年。自该研究所成立以来,动力学、强度和可靠性领域的研究一直是该研究所最重要的活动领域之一。该方向的创始人是杰出的科学家I.Sh.诺伊曼,R.S.基纳索什维利 (Kinasoshvili),S.V.索伦森,I.A.Birger,V.M.阿基莫夫。报告简要回顾了 CIAM 实力和可靠性科学学院发展的主要阶段。考虑了CIAM强度与可靠性科学学院的工作特点:根据实际需要确定问题的制定;寻找解决问题的通用方法并开发解决问题的工程方法;计算、测试和物理研究的独特结合,必要时使用多学科方法;总结经验并形成规范性技术文件;开展工作以确保发动机在其生命周期各个阶段的强度和可靠性;与航空和混合行业的企业团队以及科学组织密切互动。要简单地列出 CIAM 团队的所有主要成就是不可能的。90 年来,在苏联和俄罗斯,没有一台飞机发动机 CIAM 在确保强度和可靠性方面没有做出重大贡献。对于确保各种用途的火箭发动机、直升机传动装置和燃气轮机装置的强度和可靠性也做出了重大贡献。报告简要审视了研究所科学家对多个领域发展的贡献,包括: – 材料结构强度的研究; – 应力-应变状态、动力学和强度的计算; – 开发动力学和强度实验研究的设备和方法; – 确认发动机及其主要(对于破坏后果至关重要)部件的使用寿命; – 数学模型的开发、可靠性的工程和可行性研究; – 技术状况诊断。CIAM 员工就强度和可靠性问题对超过 25 篇博士论文和 90 多篇博士论文进行了答辩。研究所多名员工荣获荣誉称号和奖项。CIAM科学学院对国内各发动机设计局、众多研究所、大学和专业企业处理强度和可靠性问题的团队的组建具有决定性的影响。事实上,这些团队也是 CIAM 创建的科学学院的一部分。研究所编写的数十种专着、参考书、教科书、规范性技术文件(航空规则、强度标准、GOST、设计人员手册等)构成了一个内容丰富的库,已成为经典,并出现在工程师、研究人员、研究生和机械工程各个分支的学生的桌面上。在航空技术发展的现阶段,主要关注的是以下方面的发展: – 结构(在预期运行条件下的结构中实施)强度、变形模型、强度标准和结构的特殊鉴定和研究方法有前途的材料(包括各种复合材料、金属间化合物、使用增材技术获得的材料)的耐久性模型,考虑到运行过程中的破坏因素;