DNA通常在分子生物学的中心教条下起作用。1即,将DNA分子转录为RNA,然后将其转化为肽,蛋白质和酶。DNA携带的基因组信息可以指导它们组装成错综复杂的结构,并在细胞中执行编程功能,包括细胞内传播,凋亡,迁移,迁移,分裂等。生物分配的形状和结构在其功能中至关重要。因此,对这些组件的几何形状和力学的理解是结构生物学的关键。在DNA纳米技术中,DNA分子被设计为直接组装成复杂的体系结构并执行相似的机制和功能。这是基于Watson - Crick Base Pairing原则,其中A与T和G与C结合,可以用作可编程的自下而上制造策略。这个想法是由Seeman于1982年提出的,他设计了几个DNA链的四向交界处。2从那时起,已经探索了许多结构和复杂的植物。最初,DNA结构不是很好的ned and ned也不是刚性的。以下里程碑是双重
本研究的目的是提出一种地形引导方法来解释由差分干涉合成孔径雷达 (D-InSAR) 创建的 L 波段 ALOS/PALSAR 干涉图。干涉图用于估计两个快速大型滑坡 (Poche, La Valette;法国东南部) 的变形模式。针对不同的运动类型 (旋转、平移和复杂滑动) 和两个范围的表面位移速率解释了包裹和展开的相位值。检测到两个滑坡的运动子单元,并确定了受扩大或退化影响的区域。InSAR 得出的位移率与地面测量值以及来自 C 波段和 X 波段卫星 SAR 传感器的位移远程估计值一致。结果证明了 L 波段 ALOS/PALSAR 图像在监测土壤表面状态发生重大变化并被植被覆盖的活跃滑坡方面的潜力。© 2014 Elsevier B.V. 保留所有权利。
本文讨论了设计可物理变形以适应不断变化的需求的建筑表皮的问题。为了实现这一建筑愿景,设计师专注于开发用于驱动和动能转换的机械接头、组件和系统。然而,使用轻质弹性变形材料的未开发方法为设计具有更少机械操作的响应式建筑表皮和骨架提供了机会。这项研究旨在开发可用作现有建筑的第二层表皮或遮阳板的弹性模块化系统。使用第二层表皮有可能使现有建筑在各种气候条件下表现更好,并提供视觉上引人注目的表皮。通过三个原型设计实验对这种方法进行了评估,即帐篷、窗帘和百叶窗,以实现两个基本目的:舒适和沟通。这些实验原型探索了使用嵌入在变形材料中的数字和物理计算来设计可操纵阳光并充当响应式遮阳装置的建筑变形表皮。
研究了Sn-Bi-Cu、Sn-Bi-Ni、Sn-Bi-Zn、Sn-Bi-Sb合金的超塑性变形行为。本研究旨在测定Sn-Bi二元合金的应变速率敏感性指数m。在不同横梁速度下进行25、40、60和80 ℃拉伸试验,测定指数m。结果表明,指数m随Bi浓度和试验温度的增加而增大。在60和80 ℃时,Sn-Bi合金的指数m均超过了3.0,这是超塑性变形行为的阈值。研究发现,Sn-Bi共晶组织对亚共晶Sn-Bi合金的超塑性变形有显著的影响。
基因表达的改变,从而调节生理活性,例如生长和受精。[1-5]这些电子信号被认为是快速响应的长距离信号通路,对植物的生存不利。[1,5,6]因此,研究植物电生理学通过先进的电子技术为植物的疑问和干预提供了坚实的基础,[7-11]具有可持续食品供应和环境保护的潜在好处。非侵入性植物电生理学优先是侵入性的,因为获得的信号无需损害植物组织而获得的信号。[12]但是,植物的不平坦和不规则的表面地形为与电极紧密接触的大障碍带来了巨大的障碍。[11]特别是,大多数植物都会形成多种形态(直,分支,螺旋等)的三个(类似头发的附属物)和变化的密度,[13]可能具有挑战性地形成并遵守包括凝胶电极在内的常规电极。尽管使用软凝胶和粘合水凝胶可以改善与生物组织的接触,但[14-17]预先形成的固体水凝胶的平面表面和明确定义的几何形状阻碍了它们与毛茸茸的植物表面的综合接触(图1 A-I I和图S1:图S1:支持信息)。这种缺乏一致性将减少粘附力和信号传递稳定性和忠诚度。[18]
本文主要讨论可变形镜 (DM) 的要求定义、流程和验证。这些要求源自一组真实的太空任务应用。镜子的变形由单压电陶瓷致动器以单晶片配置执行。最终开发的 DM 能够在直径为 50 毫米的清晰光学孔径上产生行程为几十微米的泽尔尼克模式。它成功通过了全面的环境鉴定活动,包括热循环、冲击和振动测试,以及质子和 γ 射线辐射。在 100 K 至 300 K 的温度范围内进行了热测试和性能测试。此外,DM 经受住了所有振动(随机 17.8 g RMS 和正弦)和冲击(300 g)测试。因此,之前研究中发现的所有关键问题都已成功克服。
图1:用于耦合皮质表面重建的表面。将MRI脑图像,皮层色带分割图和中期表面的签名距离图组合在一起,Surfnet学习了三个不同的形态变形,以同时优化初始的中间表面,以与目标表面中的中置和中置型中的中置型置于跨度的中间和中间的偏移型模型(并置于中等范围)的模型(DDM),并置于中等范围。表面S G和WM表面S W分别具有另外两个DDM。采用循环约束,以与非阴性皮质厚度的实施结合使用变形轨迹,以确保生物学上的合理性。
作者:F Bett · 2022 · 被引用 4 次 — OT 使用散射力来捕获和变形生物细胞。这些力是由光离开一种介质并进入时的辐射压力引起的……
DMTR 工作组由 NASA 的 ExEP 于 2023 年 2 月发起,旨在尽早开始为空间日冕仪最具挑战性的组件——可变形镜系统提供技术路线图。以下是取得的成就:• 完成了“DM 性能目标的初步确定”,可用作供应商的临时要求,直到未来的飞行任务可以确定它们。它们涵盖:(1) 执行器数量、(2) 执行器稳定性、(3) 执行器分辨率、(4) 执行器行程、(5) 执行器螺距、(6) 残余 WFE、(7) 执行器产量和 (8) 飞行路径• 更新了 2022 年 DM 供应商调查,确定了三个有前途的候选供应商——AOA Xinetics 的电致伸缩 DM、Boston Micromachines 的静电 MEMS DM 以及法国公司 ALPAO 及其磁性 DM。 • 访问了所有三家 DM 供应商的制造工厂 • 收到了三大供应商对临时需求文件的初步回应和反馈。
背景技术 人脸变形及其检测能力是照片证件签发机构、公司和使用人脸识别进行身份验证的组织高度感兴趣的领域。人脸变形是一种图像处理技术,将两个或多个拍摄对象的脸部变形或混合在一起,在照片中形成一张脸部。变形后的照片可以看起来非常逼真地像所有参与变形的拍摄对象。变形很容易做到,几乎不需要任何技术经验,因为互联网和移动平台上有大量的工具可供使用,而且成本很低甚至免费。例如,如果一张变形的照片出现在身份证件上,那么变形的所有组成部分(如果不是全部的话)都可以使用同一个身份证件。变形可以用来欺骗人类 [ 1 ] [ 2 ] 和现有的人脸识别系统 [ 3 ],这对当前的身份验证过程造成了漏洞。