随着技术进步的快速进步,对高处理和存储能力的需求已大大增加。因此,发现操纵和转换信息的新方法是必要的。一种潜在的解决方案是量子信息处理,它大大减少了存储的数据的量,操作数量以及经典工具(例如小波变换(WT))的复杂性。wt是许多领域的主要工具,例如加密,信号编码,水印,组合,掉头和信息检索。其经典相关性推动其在量子水平上的进展,从而提高了对一,二维和三维量子小波的转换的计算效率。但是,常规的,实价的WT不适用于无损应用,并且在计算上很复杂。整数到整数WT(IWT)是另一种转换,将整数映射到整数,它使用起重方案来执行信号分解分析。此方案降低了计算成本,允许对实价WT进行实践无损应用,并产生新的小波家族。到目前为止,整数版本(Q-IWT)尚无定义的QWT定义,这在量子信息处理中可能很有价值。因此,我们为HAAR,DAUBECHIES和CDF核的一维整数小波转换提出了一种量子方法,包括信号分解和无损压缩的量子算法。此外,我们将使用IBM的仿真环境作为分析和验证的手段。我们将使用复杂性和数学分析,性能,挠性,信号恢复,熵和噪声添加指标评估所提出的转换和压缩应用。
车辆系统中的驾驶周期是决定能源消耗、排放和安全性的重要因素。快速估计驾驶周期的频率对于与燃油效率、减排和提高安全性相关的控制应用非常重要。量子计算已经确定了可以获得的计算效率。基于量子傅里叶变换的驾驶周期频率估计算法比经典傅里叶变换快得多。该算法应用于真实世界数据集。我们使用量子计算模拟器评估该方法,结果显示与经典傅里叶变换的结果具有显著的一致性。当前的量子计算机噪声很大,提出了一种简单的方法来减轻噪声的影响。该方法在 15 qbit IBM-q 量子计算机上进行了评估。对于有噪声的量子计算机,所提出的方法仍然比经典傅里叶变换更快。
到目前为止,卷积神经网络 (CNN) 一直是视觉数据的实际模型。最近的研究表明,(Vision) Transformer 模型 (ViT) 可以在图像分类任务上实现相当甚至更优异的性能。这就提出了一个核心问题:Vision Transformer 如何解决这些任务?它们是像卷积网络一样工作,还是学习完全不同的视觉表示?通过分析图像分类基准测试中 ViT 和 CNN 的内部表示结构,我们发现这两种架构之间存在显著差异,例如 ViT 在所有层上都有更统一的表示。我们探索了这些差异是如何产生的,发现了自注意力机制发挥的关键作用,它可以实现全局信息的早期聚合,而 ViT 残差连接则可以将特征从较低层强烈传播到较高层。我们研究了对空间定位的影响,证明 ViT 成功地保留了输入的空间信息,并且不同分类方法的效果显著。最后,我们研究(预训练)数据集规模对中间特征和迁移学习的影响,并最后讨论与 MLP-Mixer 等新架构的连接。
我们引入了一种名为 De formable Butterfly (DeBut) 的新型线性变换,它概括了传统的蝴蝶矩阵,可以适应各种输入输出维度。它继承了传统蝴蝶从细粒度到粗粒度的可学习层次结构,当部署到神经网络时,DeBut 层中突出的结构和稀疏性构成了一种新的网络压缩方法。我们将 DeBut 用作标准全连接层和卷积层的直接替代品,并证明了其在均质化神经网络方面的优势,并使其具有轻量级和低推理复杂度等优良特性,同时不影响准确性。DeBut 层的无数变形所带来的自然复杂性-准确性权衡也为分析和实践研究开辟了新的空间。代码和附录可公开获取:https://github.com/ruilin0212/DeBut 。
摘要 精神压力目前是一个重大问题,尤其是在年轻人中。压力会对人们的整体工作表现产生不利影响,在某些情况下甚至会导致严重的健康问题。每个人在生活中都会经历压力。本文提出了一种基于脑电图 (EEG) 识别和分类压力水平的独特方法。在这项工作中,快速 Walsh Hadamard 变换用于生成 EEG 信号中存在的所有频率。在后续阶段计算索引值的 alpha、beta、gamma 和 delta 范围。主成分分析 (PCA) 用于特征降维,然后是标准缩放器。使用 Welch 方法计算了健康和不健康 EEG 信号组的 PSD 向量。PSD 向量用作投票分类器的输入,该分类器是 k-NN 和逻辑回归分类器的组合。实验结果发现,与现有方法相比,所提出的方法在准确度 (Acc) 和均方误差 (MSE) 方面提供了更好的结果。所提出的方法最高分类准确率达到 94.22%
量子计算的快速进展以及Shor's算法[12](如Shor算法)的存在,引发了用后量词加密术代替旧密码学的必要性。朝着这一目标,标准技术研究所(NIST)发起了量子后加密术的竞争。在本文中,我们在NIST竞争的最终主义者之一NTRU提交[6]中解决了一个公开问题。(未修改)量子随机甲骨文模型中(未修改的)最佳不对称加密填充(OAEP)的安全性已被称为[6]中有趣的开放问题。现有的量词后安全证明[14]需要对OAEP变换进行修改。(请参阅下面的详细信息。)随机Oracle模型[1]是一个强大的模型,在该模型中,假设存在包括对手在内的各方都可以访问的真正随机函数,则证明了加密方案的安全性。但在现实世界应用中,随机甲骨文将被加密哈希函数替换,并且该功能的代码是公开的,并且是对手所知道的。在[4]之后,我们使用量子随机甲骨文模型,在该模型中,对手可以在叠加中对随机甲骨文进行查询(即,给定输入的叠加,他可以得到输出值的叠加)。这是必要的,因为基于真实哈希函数的量子对手攻击方案必须能够评估叠加中的功能。因此,如果一个Quantum Security请求,则随机Oracle模型必须反映该功能。
人工智能 (AI) 的情绪识别是一项具有挑战性的任务。已经进行了各种各样的研究,证明了音频、图像和脑电图 (EEG) 数据在自动情绪识别中的实用性。本文提出了一种新的自动情绪识别框架,该框架利用脑电图 (EEG) 信号。所提出的方法是轻量级的,它由四个主要阶段组成,包括:再处理阶段、特征提取阶段、特征降维阶段和分类阶段。在预处理阶段使用基于离散小波变换 (DWT) 的降噪方法,在此称为多尺度主成分分析 (MSPCA),其中使用 Symlets-4 滤波器进行降噪。可调 Q 小波变换 (TQWT) 用作特征提取器。使用六种不同的统计方法进行降维。在分类步骤中,旋转森林集成 (RFE) 分类器与不同的分类算法一起使用,例如 k-最近邻 (k-NN)、支持向量机 (SVM)、人工神经网络 (ANN)、随机森林 (RF) 和四种不同类型的决策树 (DT) 算法。所提出的框架使用 RFE + SVM 实现了超过 93% 的分类准确率。结果清楚地表明,所提出的基于 TQWT 和 RFE 的情感识别框架是使用 EEG 信号进行情感识别的有效方法。
在近几十年中,由于它们在临床诊断或人机界面(HMI S)等新兴地区的直接含义,因此眼目光分析和眼科识别构成了一个具有研究的研究领域。用户及其目光移动的眼部状态可以揭示其认知状况的重要特征,这对于医疗保健目的至关重要,也对日常生活活动的分析至关重要。因此,它已经在多个领域进行了研究和应用,例如驾驶员嗜睡检测[1-3],机器人控制[4],婴儿睡眠 - 灭绝状态识别[5]或癫痫发作检测[6]等[7,8]。已经提出了用于研究眼睛凝视和眼状态的不同技术,例如视频摄影(VOG),电学(EOG)和脑电图(EEG)。在VOG [9,10]中,几个相机记录了用户眼睛的视频或图片,并且通过应用图像处理和人工视觉算法,可以准确地分析用户的眼睛状态。在EOG [11 - 15]中,将一些电极放在用户的皮肤附近,以捕获眼部活动产生的电信号。另一方面,在脑电图技术[16,17]中,使用放置在用户头皮上的电极来测量大脑产生的电信号。由于分析和分类多个图像的昂贵过程,与基于图像的方法(例如VOG)中使用的算法相关的计算复杂性高得多[18]。),这可能是实施实际应用程序的关键信息。EOG方法似乎是基于眼动或眨眼构建HMI的有趣技术,但是在用户脸上的电极放置可能不舒服,并且在实践应用中不可用[19]。因此,脑电图技术是开发新界面的有吸引力的解决方案,基于用户的眼睛状态,可以分析和推断其认知状态(放松,压力,入睡等。
摘要:本文将新兴的混合型有源三次谐波电流注入变换器(H3C)应用于电池储能系统(BESS),形成一种新型的H3C-BESS结构。与常用的两级VSC-BESS相比,所提出的H3C-BESS能够减少无源元件和开关损耗。分析了H3C-BESS的工作原理,推导了其数学模型。针对系统的不同运行模式,提出了闭环控制策略和控制器设计,包括电池电流/电压控制和注入谐波电流控制。特别是,通过电网电流控制实现有源阻尼控制,无需无源阻尼电阻即可抑制LC滤波器谐振。仿真结果表明,所提出的拓扑结构及其控制策略具有快速的动态响应,建立时间小于4 ms。此外,电池电流和电网电流的总谐波畸变率分别仅为2.54%和3.15%。注入谐波电流的幅值仅为电网电流的一半,表明电流注入电路的损耗很小。实验结果验证了所提方案的有效性。
(Bullmore and Sporns 2009)已被证明是根据不同发展阶段的函数进行调节的(Cao等人2017)和衰老(Meunier等人2009)以及各种神经和精神病病理学(Fornito等人2015)。量化给定的实验条件或人群之间大脑连通性的有意义差异,并确定哪种网络特性在其识别中很重要,是非平凡的任务,需要复杂的统计测试或计算强化的机器学习技术(Zanin等人2016),并且没有图形表示。这一困难的一个深层理由是关于以下事实:从所有尺度上,大脑连接性从大脑连通性出现了可观察到的脑活动动力学模式(Kozma and Freeman 2016)。同样,虽然大脑地形在大脑功能中起着重要作用,但拓扑网络特性本质上是统计的。网络神经科学文献通常强调牢固的联系引起的连通性和拓扑。然而,薄弱的环节已被证明对网络拓扑具有很大的影响,因为它们的包容性可以诱导从分形到小世界普遍性的过渡(Gallos等人。2012),但也涉及网络上发生的动态和过程(Csersely 2004; Karsai等人。2014)。综上所述,这些考虑表明,实验条件可能不仅可以通过牢固的联系引起的结构来识别,还可以通过