摘要——以可再生能源 (RES) 为主导的电网是未来电力系统的设想基础设施,其中常用的并网变流器电网跟踪 (GFL) 控制存在缺乏电网支持能力、稳定性低等问题。最近,提出了新兴的电网形成 (GFM) 控制方法来改善并网变流器的动态性能和稳定性。本文回顾了现有的并网变流器的 GFM 控制方法,并从控制结构、电网支持能力、故障电流限制和稳定性方面对它们进行了比较。考虑到故障电流限制策略的影响,提供了全面的暂态稳定性分析。此外,本文还探讨了 GFM 变流器的典型应用,例如交流微电网和海上风电场高压直流 (OWF-HVDC) 集成系统。最后,讨论了 GFM 变流器在未来应用中面临的挑战。
为了在可接受的仿真时间内获得准确的寿命评估结果,以满足全生命周期设计标准,本文提出了一种基于循环神经网络 (RNN) 的模型来替代 Simulink 模型。首先建立永磁同步发电机 (PMSG) 的平均开关 (AS) 模型和平均基波 (AF) 模型来计算累积损伤。然后,在相同的任务概况下,计算并比较 AS 和 AF 模型的结温、雨流计数和累积损伤。可以看出,AS 模型可以更准确地计算组件的可靠性,因为该模型既考虑了负载变化引起的大热循环,也考虑了基波交流电流引起的小热循环。然而,与 AF 模型相比,它耗费更多时间。为此,提出使用 RNN 模型来替代系统可靠性评估程序中最耗时的部分。借助所提出的模型,与 Simulink 模型相比,可以大大减少所耗时间。最后,通过一个1小时的案例验证了RNN模型的有效性。测试用例的平均绝对百分比误差(MAPE)为0.51%,RNN模型得出结果的时间小于1秒。此外,还实施了一个年度案例来验证RNN模型,全年平均MAPE为0.78%。
摘要 —本文提出了一种控制策略,用于改善光伏发电机 (PVG) 与不平衡电网之间交换的能量的电能质量。提出了一种允许在不平衡状态下控制零序的电压源逆变器 (VSI)。研究了一种基于二阶广义积分器的方法 (SOGI-BA),该方法非常适合网络的不平衡,同时确保 PVG 与不平衡的不利影响完全隔离。研究将主要集中在三个控制目标上:平衡电流系统的生成、有功和无功功率的相关控制以及消除二频直流母线电压波动。通过 MATLAB 环境模拟的各种测试证明了这种新方法的性能。
本文提出了一种考虑多类型用户电力服务的分布式储能系统经济效益评估模型。首先,基于储能变流器的四象限运行特性,分析了分布式储能系统提供无功补偿、新能源消纳、峰谷套利等用户电力服务的控制方式与收益模型。其次,考虑储能的全寿命衰减成本、投资回收期、净现值和内部收益率,建立用户电力服务的经济效益评估模型。最后,通过经济效益与实用价值的对比研究,证明所提方法的有效性与优越性。通过敏感性分析,揭示了储能变流器备用容量配比、电能质量管理附加电价、峰谷电价差、电池成本以及项目周期对年收益率和内部收益率的影响,为分布式储能系统参与各类用户电力服务的电池选择与容量配置提供决策参考。
螺旋弹簧储能技术是一种极具潜力的新兴储能技术,利用永磁同步电机通过收紧或释放螺旋弹簧进行能量转换。针对螺旋弹簧在运行过程中扭矩与惯性同时变化的特点,采用传统的矢量控制方式,螺旋弹簧储能系统难以在调节电网输入/输出功率方面表现出良好的控制性能。提出一种基于电流矢量定向反步控制的网侧变流器(GSC)与机侧变流器(MSC)一体化的螺旋弹簧储能系统与电网功率协调控制方案。首先,建立电流矢量定向坐标系下GSC与PMSM的数学模型。其次,利用反步控制原理设计协调控制方案,并从理论上证明其稳定性。然后,通过考察期望控制性能确定控制方案中的最优控制参数。最后,仿真与实验结果表明,所提出的控制方案在选定的控制参数下,能够很好地协调GSC与MSC,准确、快速地跟踪功率信号,有效提高SSES系统的运行性能及其与电网的能量交换。
图 5.7:输出电压 V o 中的 IHD 评估 .............................................................. 124 图 5.8:LCLC 滤波器电容器 RMS 电流的评估 ........................................................ 126 图 5.9:LCLC 滤波器简化 ...................................................................................... 127 图 5.10:电压降与电感 ............................................................................................. 127 图 5.11:LCLC 滤波器谐振峰的阻尼 ...................................................................... 129 图 5.12:LCLC 滤波器的设计空间 ............................................................................. 130 图 5.13:用于 LCLC 滤波器设计验证的 SABER 模拟波形 ............................................. 133 图 5.14:具有并联 RC 阻尼的每相双交错 LCLC 滤波器 ............................................. 134 图 5.15:V PWM1 和 V PWM2 中的高频电压谐波 ............................................................. 136 图 5.16:跨L d ................................................................... 137 图 5.17:交错式 LCLC 滤波器的电感重量与电感 ........................................ 139 图 5.18:交错式 LCLC 滤波器的电感损耗与电感 ........................................ 139 图 5.19:耦合电感设计流程 ............................................................................. 141 图 5.20:交错式 LCLC 滤波器的 L d 与 L ............................................................. 143 图 5.21:交错式 LCLC 滤波器的 CI 与 L 的重量和损耗 ........................................ 143 图 5.22:交错式 LCLC 滤波器电容器 RMS 电流的评估 ........................................ 147 图 5.23:交错式 LCLC 滤波器电压降与电感的评估 ........................................ 148 图 5.24:交错式 LCLC 滤波器的设计空间 ........................................................ 149 图5.25:交错式 LCLC 滤波器的 SABER 仿真波形 ...................................................................... 151 图 5.26:滤波器重量比较 .............................................................................................. 153 图 6.1:原型系统的转换器拓扑 ...................................................................................... 156 图 6.2:电感器构造的关键阶段 ...................................................................................... 161 图 6.3:L 1 和 L 2 的测量电感 ...................................................................................... 162 图 6.4:绕组布置和构造的耦合电感 ............................................................................. 163 图 6.5:磁性元件重量比较 ............................................................................................. 165 图 6.6:转换器的热模型 ............................................................................................. 166 图 6.7:转换器的 3D 计算机模型 ................................................................................ 168 图 6.8:原型转换器 ................................................................................................ 169 图 6.9:原型转换器的详细 SABER 仿真模型 ...................................................................................... 170 图 6.10:PWM 波形比较,V PWM1 和 V PWM2 ........................................................................ 172 图 6.11:不同杂散电感值下的 V PWM1 ...................................................................................... 173 图 6.12:V PWM1 和 V PWM2 的 FFT 比较 ............................................................................. 175 图 6.13:电流比较,I 1 和 I 2 ............................................................................................. 176 图 6.14:I 1 和 I 2 的电流过冲比较 ............................................................................................. 176 图 6.15:I 1 和 I 2 的 FFT 比较 ............................................................................................. 178 图 6.16:V d 和 I d 的比较 ............................................................................................. 179 图 6.17:V d 和 I d 的特写比较 ............................................................................................. 179 图6.18:V d 和 I d 的 FFT 比较 ...................................................................................... 181 图 6.19:V 1 、IL 和 IC 的比较 ........................................................................................ 183 图 6.20:V o 和 I o 的比较 ............................................................................................. 185 图 6.21:V o 和 I o 的 FFT 比较 ...................................................................................... 186 图 6.22:测量值和计算值的转换器损耗比较 ............................................................. 187 图 6.23:转换器重量细目 ............................................................................................. 190................................... 186 图 6.22:测量值与计算值的变流器损耗对比 .......................................... 187 图 6.23:变流器重量细目 .............................................................. 190................................... 186 图 6.22:测量值与计算值的变流器损耗对比 .......................................... 187 图 6.23:变流器重量细目 .............................................................. 190
变流器功率模块化 50 kVA 功率模块 – 高达 600 kVA(12 个功率模块) 对称过载 110%(30 分钟内) – 125%(10 分钟内) – 150%(30 秒内) 电池化学成分 LFP – 磷酸铁锂电池 电池系统 直流电压范围 582.4Vdc – 759.2Vdc 电池容量 280 Ah 285 Ah 电池能量铭牌 186 kWh/机架 189 kWh/机架 电池 DoD 系数 95% 94.2% 电池寿命 20 年(1 个周期/天) AC/AC 最大往返效率 90% 最大电流 83 A 充电 / 87 A 放电/50 kVA 功率模块 AC 连接 2*185 mm²(高达 300 kVA)和 2*2*185 mm²(从 350 到 600 kVA) 额定电压 (Un) 400 Vac (3ph+N) -20%/+10% 额定频率 50 Hz +- 5Hz 防火 消防安全系统包括烟雾探测器、热探测器和灭火系统 环境