在包括 NSCLC 在内的所有肿瘤类型中,约 98% 的致癌 RAS 突变发生在 Switch I 的 G12 或 G13 密码子上,或 Switch II 区域的 Q61 密码子上。24 这些突变的获得导致 KRAS 活性改变,从而维持不受控制的 KRAS 信号网络并促进肿瘤形成和进展(图 1A、B)。KRAS 中的 G12 突变是最常见的突变,占肺癌中所有 KRAS 突变的近 90%,其次是密码子 13 和 61 的突变。24 新兴证据表明,不同的 KRAS 异构体在临床特征、并发基因组变异和基因表达谱方面高度异质,凸显了不同 KRAS 突变体潜在的异构体依赖性治疗脆弱性。 16 KRAS G12C 突变与烟草暴露密切相关,据报道,与其他 KRAS 亚型和 KRAS 野生型 NSCLC 相比,KRAS G12C 突变具有更高的肿瘤突变负担和较高的基因同时突变率,例如 STK11 、 KEAP1 、 SMARCA4 和 ATM 。16,17 此外,具有 KRAS G12C 突变的 NSCLC 倾向于上调免疫逃逸标志物,例如 PD-L1 和 PD-L2,从而部分解释了在该患者群体中观察到的对 ICI 的敏感性增加。16,25
体细胞突变的积累是癌症的驱动力,长期以来一直与衰老有关。由于量化突变负担与非癌组织年龄的限制,尚不清楚体细胞突变对其他衰老表型的影响。DNA测序技术的最新进展允许对衰老组织中的体细胞突变进行大规模定量。这些研究表明,随着年龄的增长,正常组织中突变的逐渐积累,以及主要由癌症相关突变驱动的大量克隆膨胀。然而,很难想象到目前为止确定的与年龄相关的体细胞突变的负担和随机性质如何解释大多数逐渐发展的老化表型。跨物种的研究还发现,寿命较长的物种具有较低的体细胞突变率,尽管这可能是由于对其他表型(例如癌症)作用的选择性压力所致。对较高的体细胞突变负担且没有加速衰老的迹象的最新研究进一步质疑体细胞突变在衰老中的作用。总体而言,除了少数例外,例如癌症,最近的DNA测序研究和遗传突变并不支持这样的观念,即体细胞突变会随着年龄的驱动衰老表型积聚,以及在衰老中的体细胞突变(如果有的话)仍然不清楚。
靶向药物的开发使得癌症治疗可以实现精准医疗,并实现最佳的靶向治疗。准确识别癌症药物基因有助于加强对癌症靶向治疗的认识,促进癌症的精准治疗。然而,由于多组学数据的多样性和复杂性,发现的癌症药物基因非常少见。本研究提出了一种基于机器学习的癌症药物基因发现新方法DF-CAGE。DF-CAGE整合了~10000个TCGA谱中的体细胞突变、拷贝数变异、DNA甲基化和RNA-Seq数据,以识别癌症药物基因的概况。我们发现DF-CAGE从多组学数据的角度发现了目前已知的癌症药物基因的共性,并在OncoKB、Target和Drugbank数据集上取得了优异的表现。在~20,000个蛋白质编码基因中,DF-CAGE精确定位了465个潜在的癌症药物基因。我们发现候选癌症药物基因(CDG-基因)具有临床意义,可分为高可信、可靠和潜在基因集。最后,我们分析了组学数据对药物基因识别的贡献。我们发现DF-CAGE主要根据CNA数据、基因重排和人群中的突变率来报告药物基因。这些发现可能对未来新药的研究和开发有所启发。
肢带型肌营养不良症 R1 型 (LGMDR1) 是一种人类常染色体隐性肌病,由钙蛋白酶 3 蛋白 (CAPN3) 缺乏引起。这种疾病缺乏有效的治疗方法和合适的模型,因此通过 CRISPR-Cas9 生成 KO 猪提供了一种更好地了解疾病行为学和开发新疗法的方法。显微注射是 CRISPR-Cas9 在猪胚胎中进行基因编辑的主要方法,但最近也有报道称使用电穿孔可以更快、更轻松地处理更多胚胎。本研究的目的是优化猪卵母细胞电穿孔,以最大限度地提高胚胎质量和突变率,从而有效生成 LGMDR1 猪模型。我们发现,与显微注射相比,使用 4 个电穿孔脉冲和双倍 sgRNA 浓度生成 CAPN3 KO 胚胎的效率最高。直接比较显微注射和电穿孔,发现胚胎发育速度和突变参数相似。我们的研究结果表明,卵母细胞电穿孔是一种比显微注射更简单、更快捷的方法,可与标准方法相媲美,为猪转基因的民主化铺平了道路。© 2022 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
摘要:斑点的果蝇(果蝇苏木木松木)是东亚的原生,但已成为对水果生产的全球威胁。近年来,在该物种中建立了CRISPR/CAS9靶向,允许进行功能性基因组和遗传控制研究。在这里,我们报告了D. suzukii表达Cas9菌株的产生和表征。使用含有EGFP荧光标记基因的Piggybac构建体生成了五个独立的转基因线,而在D. melanogaster Heat Hote Hote蛋白70启动子和3'UTR的控制下,Cas9基因在CAS9基因下产生。热震(HS)处理的胚胎,揭示了转基因CAS9表达的强热诱导性。通过将靶向EGFP的GRNA注入一条选定的线中,G 0倍的50.0%显示出镶嵌的荧光表型,而G 0倍的G 0倍产生的G 1突变体没有HS。通过应用HS,这种体细胞和种系诱变率分别增加到95.4%和85.7%。接受HS的父母植物导致其后代的突变遗传(92%)。另外,针对内源基因黄色导致色素沉着和男性致死性。我们讨论了这些效率和温度依赖性CAS9菌株的潜在用途用于铃木D. suzukii中的遗传研究。
摘要:离子通道和 G 蛋白偶联受体 (GPCR) 的突变并不少见,可导致心血管疾病。鉴于先前报道的与高突变率相关的多种因素,我们根据 (i) 靠近端粒和/或 (ii) 高腺嘌呤和胸腺嘧啶 (A+T) 含量对多个人类基因的相对易变性进行了排序。我们使用基因组数据查看器提取基因组信息,并根据与因素 (i) 和 (ii) 的关联检查了 118 个离子通道和 143 个 GPCR 基因的易变性。然后,我们用 31 个编码离子通道或 GPCR 的基因评估了这两个因素,这些基因是美国食品药品管理局 (FDA) 批准的药物所针对的。在所研究的 118 个离子通道基因中,80 个符合因素 (i) 或 (ii),匹配率为 68%。相比之下,143 个 GPCR 基因的匹配率为 78%。我们还发现,FDA 批准药物靶向的 GPCR 基因(n = 20)的突变性相对低于编码离子通道的基因(n = 11),而编码 GPCR 的靶基因长度较短。本研究结果表明,使用因子药物基因组的匹配率分析来系统地比较 GPCR 和离子通道的相对突变性是可行的。通过两个因子对染色体的分析确定了 GPCR 的一个独特特性,它们的核苷酸大小与端粒的接近程度之间存在显着关系,这与大多数易患人类疾病的基因位点不同。
不同于生物体进化( Leroi 等人, 2003 年; Merlo 等人, 2006 年)。在大多数情况下,生物体已经通过自然选择进行了优化,使得大多数具有表型效应的突变(非中性突变)会使情况变得更糟。对于大多数生物体来说,通常只有极少数有益的突变,而有害的突变则很多( Bo¨ ndel 等人, 2019 年; Eyre-Walker 和 Keightley, 2007 年)。然而,自然选择并没有优化体细胞的适应性。它们不会在我们的体内尽可能地增殖和存活。恰恰相反,它们的增殖受到严格调控,而且它们经常在出现任何问题的第一个迹象时死亡。这是因为自然选择已经对它们进行了优化,以配合生物体的适应性( Aktipis, 2020 年)。因此,与增加有机体适应度的突变相比,体细胞中应该存在更多增加细胞适应度的突变。它们甚至可能比对细胞有害的突变更频繁。如果是这样,那么增加体细胞突变率的突变体突变将被正向选择,因为它产生的适应性突变多于有害突变。这对于进化生物学家来说是违反直觉的,但马丁科雷纳的研究表明这是真的。他们发现除了少数必需基因外,几乎没有负面选择的证据,即消除有害突变。但他们发现了大量正向选择的证据,即丰富了增加体细胞适应度的突变。
尽管我们一生中患癌症的风险约为 40%,但令人惊讶的是这个数字并没有更高。我们体内的 10 13 个有核细胞每细胞分裂约复制 3 × 10 9 个碱基对,内在突变率约为每碱基对 10 –4.5 个,而每天的化学致癌物和辐射还会产生额外的突变。DNA 质量控制途径修复了大部分损伤,但越来越明显的是,免疫系统在限制癌变方面发挥着重要作用——这就是免疫监视的概念。事实上,肿瘤进化出了无数机制来逃避免疫,这一过程称为免疫编辑 1 。Boon 等人 2 首次通过展示 CD8 + T 细胞对自身肽的耐受性可以被癌细胞突变打破,从而产生氨基酸取代,使肽具有免疫原性,从而定义了癌症免疫监视的分子性质。在接下来的十年里,越来越多的实验室开展研究,证实癌症特异性肽由多种机制产生,而且免疫系统在控制肿瘤发生方面起着至关重要的作用。限制 T 细胞活化和功能的免疫检查点分子(如细胞毒性 T 淋巴细胞抗原 4 (CTLA4) 和程序性细胞死亡蛋白 1 (PD1))的发现导致了免疫检查点抑制剂的开发,这些抑制剂已证明细胞免疫在根除人类癌症方面具有巨大潜力 3 。然而,大多数癌症对检查点抑制剂和其他免疫疗法的抵抗力
作为消化系统的常见恶性肿瘤,在所有恶性肿瘤中,食管癌排名第七和第六的全球发病率和死亡率。男性患者的数量约为女性患者的2 - 3倍(Sung等,2021)。目前,食管癌的两种主要组织学亚型,包括食管鳞状细胞癌(ESCC)和食管腺癌(EAC),每种癌都有显着的地理差异和不同的风险因素。eac在西方国家高度普遍,与巴雷特的食道,胃食管反应,肥胖和吸烟有关。相比之下,在中国和其他一些东亚地区非常普遍的ESCC与吸烟,酗酒和饮食习惯差有关(Morgan等,2022)。食管癌的早期症状是非典型的,很容易被忽视,导致大多数患者在晚期被诊断出来,显着增加了治疗困难和复发的机会。尽管近年来肿瘤治疗研究的进步以及各种新药的出现,但食管癌缺乏可用于肺癌的靶向治疗选择,即较高的突变率(Melosky等,2021)。此外,与肾癌和恶性黑色素瘤不同,食管癌对免疫疗法的反应不佳(Yoneda等,2021)。因此,化学疗法仍然是临床实践中食道癌治疗的基石。但是,伴随的有毒副作用和强烈的耐药性不应被低估。纳米医学的快速发展无疑给这个问题带来了希望。多项研究证实了纳米颗粒(NP)在肿瘤成像,靶向药物递送,肿瘤免疫疗法和肿瘤光热
在高度靶向的药物中发生了显着增加,这些药物对具有特殊基因组改变的晚期癌症患者具有疗效。主要示例是针对NTRK融合的NTRK抑制剂,仅在约0.3%的癌症中发现。1,2多达75%的患有NTRK融合并接受这些药物的肿瘤患者有反应。 这些结果导致食品和药物施用(FDA)批准使用NTRK抑制剂LAROTROTECTINIB和ENTRETECTINIB在NTRK融合 - 阳性实体瘤的成人和小儿患者中,无论起源组织如何。 同样,Pembrolizumab是一种靶向编程细胞死亡蛋白1的免疫检查点阻断抗体,已获得FDA的批准,用于治疗所有具有两个特定分子标记物之一的固体瘤,即微片状不稳定性(微观细胞不稳定性),可从A缺损中衍生出不匹配的修复基因和高肿瘤突变性突变率。 这两个标记都与大量的晚期罐子子组中对pembrolizumab的持久反应有关。 3,4在本期刊中,Wirth等人。 5和Drilon等。 6报告说,有效的RET抑制剂Selpercatinib(Loxo-292)现在有望改变另一个基因组子组的景观-ERSTER-RET癌。 RET原始癌基因编码由细胞内激酶,大型外胞外域和跨膜结构域组成的跨膜受体酪氨酸激酶。 1-4 RET充当生长因子的神经胶质细胞系衍生的神经性因子家族的受体。1,2多达75%的患有NTRK融合并接受这些药物的肿瘤患者有反应。这些结果导致食品和药物施用(FDA)批准使用NTRK抑制剂LAROTROTECTINIB和ENTRETECTINIB在NTRK融合 - 阳性实体瘤的成人和小儿患者中,无论起源组织如何。同样,Pembrolizumab是一种靶向编程细胞死亡蛋白1的免疫检查点阻断抗体,已获得FDA的批准,用于治疗所有具有两个特定分子标记物之一的固体瘤,即微片状不稳定性(微观细胞不稳定性),可从A缺损中衍生出不匹配的修复基因和高肿瘤突变性突变率。这两个标记都与大量的晚期罐子子组中对pembrolizumab的持久反应有关。3,4在本期刊中,Wirth等人。5和Drilon等。 6报告说,有效的RET抑制剂Selpercatinib(Loxo-292)现在有望改变另一个基因组子组的景观-ERSTER-RET癌。 RET原始癌基因编码由细胞内激酶,大型外胞外域和跨膜结构域组成的跨膜受体酪氨酸激酶。 1-4 RET充当生长因子的神经胶质细胞系衍生的神经性因子家族的受体。5和Drilon等。6报告说,有效的RET抑制剂Selpercatinib(Loxo-292)现在有望改变另一个基因组子组的景观-ERSTER-RET癌。RET原始癌基因编码由细胞内激酶,大型外胞外域和跨膜结构域组成的跨膜受体酪氨酸激酶。1-4 RET充当生长因子的神经胶质细胞系衍生的神经性因子家族的受体。配体结合后,Autophos-
