图 1.旧金山 ...................................................................................................................... 5 图 2.萨克拉门托...................................................................................................................... 5 图 3.指南内容概述 .................................................................................................... 6 图 4 – 商业新建建筑按建筑面积细分预测,总计 157,000,000 平方英尺/年。来源:加州能源委员会 ...................................................................... 11 图 5。模拟在设计中的作用 ...................................................................................................... 18 图 6。测量的系统气流,站点 3............................................................................................. 20 图 7。测量的空气处理器提供的冷却,站点 3(浅色条包括 2002 年 8 月至 10 月,深色条涵盖 2002 年 11 月至 2003 年 1 月) ............................................................................................. 20 图 8。典型的无管道回流管道竖井 ............................................................................................. 28 图 9。典型的管道立管 ............................................................................................................. 29 图 10。测量的照明时间表(设计负荷计算的第 90 个百分位数和能量模拟的第 50 个百分位数)小型、中型和大型办公楼 – ASHRAE 1093-RP...................................................................................................................... 38 图 11。测量的工作日照明曲线 – 站点 1 办公区域显示平均值(线)和最小/最大值(虚线)............................................................................................................. 40 图 12。测量的周末照明曲线 – 站点 1 办公区域显示平均值(线)和最小/最大值(虚线)............................................................................................................. 40 图 13。办公设备负荷系数比较 – Wilkins, C.K.和 N. McGaffin。ASHRAE 杂志 1994 - 测量办公楼中的计算机设备负载 ....... 41 图 14。测量设备计划(90 百分位数用于设计负载计算,50 百分位数用于能量模拟)适用于小型、中型和大型办公楼 - ASHRAE 1093-RP............................................................................................................. 44 图 15。测量的插头功率密度工作日概况 – 站点 1 办公区域显示平均值(线)和最小/最大值(虚线)............................................................................................. 45 图 16。测量的插头功率密度周末概况 – 站点 1 办公区域显示平均值(线)和最小/最大值(虚线)............................................................................................. 45 图 17。测量的站点 5 工作日插头负载概况(1999 年 11 月 - 2000 年 9 月)来源:Naoya Motegi 和 Mary Ann Piette,“从设计到运营:新建筑绩效合同的多年结果”,2002 年 ACEEE 夏季研究......................................................................................................................... 46 图 18。CalArch 基准测试工具结果、办公楼用电强度、PG&E 和 SCE 数据(以不同颜色表示)共计 236 栋建筑...................................................................................................................... 48 图 19。CalArch 基准测试工具结果、办公楼燃气使用强度、共计 43 栋建筑的 PG&E 数据............................................................................................. 48 图 20。2003 年 2 月 7 日在站点 #4 测得的 CO 2 水平......................................................................... 54 图 21。VAV 热水再热箱控制 - 单最大值............................................................................. 58 图 22。VAV 热水再热箱 - 双最大值......................................................................................... 60 图 23。示例 VAV 箱入口传感器性能图表,CFM 与速度压力信号............................................................................................................................. 67
当为使用 Trane ® 或 TITUS ® 接线盒的项目提供 VAV 时,请考虑使用 AS-VAVDPTx-1 产品(请参阅应用特定控制器技术手册 (FAN 636.3) 中的“建筑 VAVDPT 应用应用说明 (LIT-6363042)”)。Trane 和 TITUS 都是为项目提供 VAV 接线盒的原始设备制造商 (OEM)。Trane 通常为其接线盒提供风门执行器,而 TITUS 为其 QFPC 系列风扇供电箱提供风门执行器。VAVDPT 有两种型号,包括 VAV 控制器和 DPT-2015 速度压力传感器。DPT 安装并预接线到 VAV 的盖子上。请参阅 OEM 参考手册 (FAN 638)
摘要 建筑供暖、通风和空调 (HVAC) 设备经常无法满足设计时所设想的性能预期。此类故障通常会在很长一段时间内被忽视。此外,人们对各种不同且往往相互冲突的性能指标的组合寄予了更高的期望,例如能源效率、室内空气质量、舒适度、可靠性、限制公用设施的峰值需求等。为了满足这些期望,商业和住宅建筑中使用的流程、系统和设备正变得越来越复杂。这一发展既需要使用自动诊断来确保无故障运行,又通过提供强大且足够灵活的分布式平台来执行故障检测和诊断 (FDD),从而为各种建筑系统提供诊断功能。本报告中描述的研究工作的目的是开发、测试和演示可以检测空气处理单元 (AHU) 和变风量 (VAV) 箱中常见机械故障和控制错误的 FDD 方法。这些工具的设计足够简单,可以嵌入到商业楼宇自动化和控制系统中,并且仅依赖于这些系统中常见的传感器数据和控制信号。AHU 性能评估规则 (APAR) 是一种诊断工具,它使用一组源自质量和能量平衡的专家规则来检测 f
• 空气处理机组 • 空气测量 • 冷梁 • 阻尼器 • EcoAdvance™ HVAC 负荷减少 (HLR) 模块 • 能量回收通风机 • 风扇和鼓风机 • 风扇 • 过滤 • 格栅和扩散器 • 加热盘管和冷却盘管 • 百叶窗 • 地板下空气分布 • 单元通风机 • 变风量 (VAV) 终端 • 变速驱动器
BEM 建筑能量建模 COP 性能系数 CTES 冷热能存储 GEB 电网互动式高效建筑 MILP 混合整数线性规划 PSZAC 单区组合式空调 PVAV 组合式变风量 RTU 屋顶单元 SOC 充电状态 TOU 使用时间 UTSS 单元式热存储系统
• 安装管道式变风量 (VAV) 通风系统,配备热水加热和直接膨胀 (DX) 冷却/除湿。空气处理机组将安装在较低楼层。风冷冷凝机组将位于建筑物后面的地面上。建筑物日托部分的每个区域都将配备带热水再加热的终端 VAV 箱(不包括小剧院)。安装专用的仅加热和通风空气处理机组来为场景商店提供服务。考虑到历史保护。
1. 所有类型的空气处理机组、风机盘管机组、变风量空调、组合机组等。2. 所有类型的中央通风机(送风、排风、喷射风扇等)。3. 冷冻水系统,包括泵、冷却器和冷却塔。4. 所有其他空调机组和恒温器。5. 锅炉,包括热水泵。6. 计算机房空气处理机组。7. 组合设备(如应急发电机)的监控点。8. 照明控制系统。9. 消防、安全和安保设施与设备。10. 以及任何其他提供 BMS 控制和监控的系统。
• Humidi-MiZer ® 自适应除湿选项 • 所有变风量和 SAV™ 装置均采用变频驱动 • 室外环境温度低至 32°F(可选低温控制,-20°F)时可进行机械冷却操作 设计灵活性 专用垂直送风/回风装置 (A2、A3、A6、A7) 是新建建筑或现有设施改造的理想选择。当装置安装在附属屋顶路缘上时,可保持低装置外形。管道直接连接到屋顶路缘,以便在装置定位之前完成所有管道工程。专用水平装置 (A4、A5、A8、A9) 是更换或穿墙应用的理想选择,在穿墙应用时,必须在管道穿透屋顶之前减弱声音。管道直接连接到装置。水平装置可以安装在路边或平板上。装置柜可以配备可选的双壁结构,适用于对室内空气质量敏感的应用。