电池存储系统有几种收入来源,可以将它们叠加以进一步增加收入。通常,人们使用价格套利从电池存储中获取收入。然而,参与频率响应等辅助服务也可以获得额外收入。本研究提出了一种线性优化方法来解释当地能源系统参与批发日前电力市场和多种频率响应服务。该方法已应用于一个学校案例研究。五种运营策略的市场收入和投资价值细分如下。频率响应服务的可用性收入和响应能量收入的价值是不同的。最后,评估了收入叠加对电池退化的影响。结果表明,通过叠加多种收入,当地能源系统可以降低运营成本,提高电池存储投资的可行性,同时减少退化,延长使用寿命。
背景:自动脑肿瘤分割方法是一种计算算法,可从多模态磁共振成像 (MRI) 中勾画出肿瘤轮廓。我们介绍了一种使用深度学习 (DL) 技术对多形性胶质母细胞瘤 (GBM) 患者的切除腔 (RC) 进行自动分割的方法及其结果。方法:纳入 30 名 GBM 患者的术后、有无造影的 T1w、T2w 和液体衰减反转恢复 MRI 研究。三位放射肿瘤学家手动勾画了 RC 以获得参考分割。我们开发了一种 DL 腔分割方法,该方法利用所有四个 MRI 序列和参考分割来学习执行 RC 勾画。我们根据 Dice 系数 (DC) 和估计体积测量值评估了分割方法。
描述:微生物岩是常见的碳酸盐岩,记录了可能形成垫、叠层石和凝块石的微生物群落的活动。在整个地质时代,钙质微生物一直是叠层石和凝块石的重要贡献者,更广泛地说,是礁石发育和其他类型的碳酸盐堆积的重要贡献者。它们与地球历史上的重大生物危机有关,尽管它们在这些危机之前、期间和之后的作用存在争议。这些项目侧重于表征古老地体中的微生物岩和迷人的钙质微生物,以及不同尺度的古环境和古生态解释。表征需要岩相学和微观成像以及微观分析地球化学技术,根据项目的不同,宏观尺度背景也不同。这些主题也适用于 36 分理学硕士项目。
光纤基础架构对于处理从军事智能到个人信息的广泛敏感数据至关重要。近年来,这些系统对这些系统的破坏尝试增加,以及未经授权的数据拦截的风险,这对量子计算的进步加剧了[1,2]。光纤特别容易受到窃听攻击的影响,其中未经授权的光耦合技术(例如evaneScent耦合,剪切,V-Grove剪切和微宏弯曲[3,4)可用于拦截数据。监视光电水平是检测窃听攻击的一种方法,但它可能不适用于导致最小或无法检测到的功率水平下降的攻击[5]。比光学功率跟踪更复杂的技术涉及监测接收器的极化状态变化,以使窃听尝试的正常系统变化。早期工作[6]使用分布式光纤传感(DFO)引入了一个系统,该系统可以通过使用已安装的光纤电缆触摸或操纵围栏来检测签名。但是,由于纤维杂质而依赖瑞利和布里鲁因反向散射,使该溶液复合物。此外,需要高速脉冲激光器以基于反向散射脉冲延迟确定漏洞的位置,再加上二氧化双流器以滤除放大的自发噪声的要求,并以其高成本进行贡献。1a)。[7]中的工作研究了不同纤维事件的极化特征,因为在特定时间和频率窗口中极化的序列变化,通过处理Poincar´e球中的极化状态得出(请参阅图通过窃听和有害事件产生的签名是在独特的情节中视觉的,被称为瀑布,使人类安全操作员可以在视觉上区分合法和未经授权的活动。这是一种比[6]的方法更简单,更具成本效益的恶意活动检测方法。然而,由于需要分析瀑布地块的人类专家,因此基于可视化的技术具有有限的适用性和可伸缩性。为了克服现有人类依赖性解决方案的可伸缩性和成本限制,我们引入了一种使用机器学习(ML)算法来分析极化特征的新方法。本文是第一个针对三种电缆类型进行实验收集和分析包含窃听攻击以及其他潜在有害和无害事件的数据集的。我们的方法论是从正常操作条件和无害事件中分析和分析窃听和潜在有害事件的过程,从而允许潜在的大规模光网络部署。提出的方法以92.3%的精度成功地分离了签名。
摘要:聚对二甲苯 (PC) 因其高机械强度和生物相容性等优异性能在过去几年中引起了极大的关注。当用作柔性基板并与高κ电介质如氧化铝 (Al 2 O 3 ) 结合时,Al 2 O 3 /PC 堆栈在生物医学微系统和微电子等领域的各种应用中变得非常引人注目。对于后者,尤其需要氧化物的原子层沉积,因为它可以沉积高质量和纳米级氧化物厚度。在本文中,实现了在 15 μ m 厚的 PC 层上进行 Al 2 O 3 的原子层沉积 (ALD) 和电子束物理气相沉积 (EBPVD),并通过 X 射线光电子能谱结合原子力显微镜研究它们对 Al 2 O 3 /PC 所得堆栈的影响。我们发现,基于 ALD 的 Al 2 O 3 /PC 叠层可产生纳米柱状表面,而基于 EBPVD 的 Al 2 O 3 /PC 叠层可产生预期的光滑表面。在这两种情况下,Al 2 O 3 /PC 叠层都可以轻松地从可重复使用的 SiO 2 基板上剥离,从而产生柔性 Al 2 O 3 /PC 薄膜。这些制造工艺经济、产量高,适合大规模生产。尽管 ALD 在半导体行业特别受欢迎,但我们发现 EBPVD 更适合实现用于微电子和纳米电子的 Al 2 O 3 /PC 柔性基板。
”从某种意义上说,我认为人工智力是我们在这里做的事情的坏名称。您将“人工智能”一词说出聪明人,他们就开始就自己的智能建立联系,对他们来说很容易和难以使这些期望叠加到这些软件系统上。”
“从某种意义上说,我认为人工智能对于我们在这里所做的事情来说是一个坏名字。一旦你对一个聪明的人说出‘人工智能’这个词,他们就会开始联想到他们自己的智力,关于对他们来说什么是容易的,什么是困难的,他们把这些期望叠加到这些软件系统上。”
1 简介 1–1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... . . . . . . . . . 2.1 订购信息 2–1 . . . . . . . . . . . . . . . . . 2.2 端子功能 2–1 . . . . . . . . . . . . . . . . . . . 2.3 定义和术语 2–2 . . . . . . . ................................................................................................................................................................................................................................................. 3 功能描述 3–1 ........................................................................................................................................................................................................................................................................................ 3.1 工作频率 3–1 ........................................................................................................................................................................................................................................................................................ 3.1 工作频率 3–1 ........................................................................................................................................................................................................................................................................................................ 3.1.1 工作频率3.2 内部架构 3–1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 抗混叠滤波器 3–1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Sigma-Delta ADC 3–1 . . . . . . . . . . . . . . . . . . . . . . . . ...
WSDY06A1Y2N 产品是单节锂离子 / 锂聚合物可充 电电池组保护的高集成度解决方案。 WSDY06A1Y2N 包括了先进的功率 MOSFET ,高精 度的电压检测电路和延时电路。 WSDY06A1Y2N 具有非常小的 SOT-23-5L 封装, 这使得该器件非常适合应用于空间限制得非常小的 可充电电池组应用。 WSDY06A1Y2N 具有过充、过放、过流、短路等所 有电池需要的保护功能,并且工作时功耗非常低。 WSDY06A1Y2N 不仅仅为穿戴设备而设计,也适用 于一切需要锂离子或锂聚合物可充电电池长时间供 电的各种信息产品的应用场合。
人们认为,诱导磁层的磁场以叠加场为主。理论上,这种叠加场的方向应该与行星际磁场的 yz 方向一致。然而,观测表明,诱导磁层的磁场方向与行星际磁场方向相反。利用天问一号和 MAVEN 的联合观测,我们获得了火星诱导磁层在精确 MSE 坐标系下的平均磁场图,并计算了其标准差。标准差证实了平均磁场分布与稳态假设一致。磁场图显示,平均磁场在 yz 平面上顺时针旋转,发生在火星诱导磁层的白天和夜间。根据磁感应方程,当磁层内等离子体流速存在差异时,就会发生磁场的这种顺时针旋转。值得注意的是,其他非磁化行星的感应磁层表现出与火星相似的定性特性,表明它们具有可比的磁场特征。