(2023年8月12日收到; 2024年4月19日修订; 2024年4月21日接受)。摘要:在各种工业应用中,碳钢的腐蚀是一个重要的问题,有效的腐蚀抑制剂的发展对于缓解此问题至关重要。近年来,由于其独特的特性和环保性,生物活性金属复合物已成为有前途的腐蚀候选者。旨在研究腐蚀抑制剂的活性和有效性。通常,抑制剂在表面吸附特性上工作。在这里,我们专注于通过理论方法研究金属表面上的抑制剂吸附活性。Schiff碱化合物与金属表面的相互作用非常好。抑制剂的相互作用是通过密度功能理论研究借助 *dxvvldq dqg $ ffhou \ v 0dwhuldo 6wxglr)urp wkh fdofxodwlrq ri +202 /802 /802ǻ(ǻ1dqg fukui seltifity confffect function 2 complect formity conffffle 理论计算的很短的时间显然告诉我们有关Schiff碱基复合物的抑制剂活性。理论计算的很短的时间显然告诉我们有关Schiff碱基复合物的抑制剂活性。
碳氮比 (C/N) 除少数例外,氮原子数不应超过有机叠氮化物中的碳原子数。尽管可以少量合成一些 C/N 比在 1 和 3 之间的叠氮化物,但应尽快使用或淬灭叠氮化物。叠氮化物应储存在 -18 °C 且避光的环境中(最好放在塑料琥珀色容器中)。浓度不应超过 1 M。六规则评估有机叠氮化物稳定性的另一种方法是“六规则”,该规则规定每个能量官能团的碳原子数不应少于六个。每个能量官能团(叠氮化物、重氮、硝基等)六个碳原子(或其他大小大致相同的原子)可提供足够的稀释度,使化合物相对安全。每个官能团的碳原子数少于六个可能导致材料具有爆炸性。
b'Abstract:在石墨烯纳米结构中掺入非苯并丁基基序会显着影响其特性,从而使其对碳基电子中的应用有吸引力。然而,了解特定的非苯基结构如何影响其性质仍然有限,并且需要进一步的研究以充分理解其含义。在这里,我们报告了一种地面合成策略,用于制造非偶氮纳米仪,其中包含五角形和七型甲环的不同组合。通过扫描隧道显微镜和光谱检查研究了它们的结构和电子特性,并补充了计算研究。在AU(111)表面的前体P的热激活后,我们检测到了两种主要的纳米摄影产物。纳米谱烯A A A A嵌入了通过甲基取代基氧化环闭合形成的两个叠氮烯单元,而A A S包含一个叠氮单元和一个石 - 孔缺陷,由氧化环盘纤维和骨骼环形反应组合形成。a a A表现出抗铁磁基态,其磁性交换耦合最高的含量最高的含量含量为纳米谱,并与副产品并存,副产品具有封闭的壳构型,这是由环封元型和环型重新计算反应组合的(b a a a,b a s s s s,b a,b a s,b a,b a s s,b a s s,b s-a和b s s)。我们的结果提供了对包含非苯甲酸基序及其量身定制的电子/磁性的新型NG的单个金原子辅助合成的见解。
尽管使用传统方法 5 或手性催化剂 6,7 或双催化 8 来实现非对映体不对称催化(DAC)的新策略仍备受关注。相反,虽然含氢键供体的双功能催化剂已经得到广泛应用,9 但是仅通过改变这种催化剂的氢键供体来控制非对映体选择性的方法还很少见。10 对于双功能叔胺催化,理论研究提出了三种工作模型,它们在催化剂的氢键供体与亲核试剂和亲电试剂的相互作用方式上有所不同(方案 1A)。11 – 15 离子对氢键模型(A 型)最初由 Wynberg 11 a 提出,并得到 Cucinotta 和 Gervasio 的理论研究支持。11 b 布朗斯台德酸-氢键模型(B 型)由 Houk 等人揭示。通过量子力学计算。12 A 型模型与 B 型模型的不同之处在于,催化剂的氢键供体分别用于激活亲电试剂和稳定亲核中间体,同时形成的烷基铵离子作为布朗斯台德酸分别与其余亲核试剂或亲电试剂相互作用。当涉及(硫)脲等双氢键供体时,反应可能通过 A 型模型的过渡态进行,其中两个 N – H 键都与亲电试剂相互作用,正如 Takemoto 通过实验研究 13 a 所建议并得到理论研究的支持,13 b – d 或通过模型 B,其中两个