2.1.2 芯片架构 ................................................................................................................................ 8
随着量子器件和量子算法的发展,量子计算机可以解决经典计算机难以解决的问题。量子计算机已经成功应用于量子化学、凝聚态物理和格子场论等许多领域(例如参见参考文献 [ 1 – 7 ])。随着量子比特数量的增加和量子器件保真度的提高,我们可以处理更现实的物理模型,探索量子计算机的潜力。作为一个应用示例,本文用量子算法在不同温度下准备 Ising 模型的热态,包括接近临界温度和低温区域的点。为了证明我们方法的可行性,我们将所选物理量的量子模拟结果与经典模拟结果进行了比较。已经提出了许多算法来使量子计算机能够准备热态。这些方法包括量子热动力学方法,其中目标系统与处于平衡状态的溶液耦合 [8];基于热场双态的变分量子算法 [9,10];以及许多量子虚时间演化 (QITE) 算法,例如利用 Hubbard-Stratonovich 变换的算法 [11]、基于变分假设的 QITE (QITE-ansatz) [12]、基于测量的 QITE (QITE-measure) [13],以及通过执行坐标优化的 QITE [14]。我们的研究范围集中在有噪声的中尺度量子 (NISQ) 设备的使用 [15,16]。考虑到量子
摘要。量子计算为模拟多体核系统开辟了新的可能性。随着多体系统中粒子数量的增加,相关汉密尔顿量的空间大小呈指数增长。在使用传统计算方法对大型系统进行计算时,这带来了挑战。通过使用量子计算机,人们可能能够克服这一困难,这要归功于量子计算机的希尔伯特空间随着量子比特数的增加而呈指数增长。我们的目标是开发能够重现和预测核结构(如能级方案和能级密度)的量子计算算法。作为汉密尔顿量的示例,我们使用 Lipkin-Meshkov-Glick 模型。我们对汉密尔顿量进行了有效的编码,并将其应用到多量子比特系统上,并开发了一种算法,允许使用变分算法确定原子核的全激发光谱,该算法能够在当今量子比特数有限的量子计算机上实现。我们的算法使用哈密顿量的方差 DH 2 E −⟨ H ⟩ 2 作为广泛使用的变分量子特征值求解器 (VQE) 的成本函数。在这项工作中,我们提出了一种基于方差的方法,使用量子计算机和简化量子比特编码方法查找小核系统的激发态光谱。
3 用于分子模拟的量子计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ...
量子启发式元启发法是一种将量子力学原理融入使用非量子机器的经典近似算法的求解器。由于量子原理的独特性,量子现象的启发及其在根本不同的非量子系统(而不是真实或模拟的量子计算机)中的实现方式提出了有关这些算法的设计及其结果在真实或模拟的量子设备中的可重复性的重要问题。因此,这项工作的贡献是回答这些问题的第一步,它试图找出现有文献中应该考虑或调整的关键发现,以构建可用于量子机器的混合或全量子算法。这是通过提出和研究四种启发式、模拟和真实的量子细胞遗传算法来实现的,据作者所知,这些算法是使用具有 32 个量子比特的量子模拟器和采用 15 个超导量子比特的真实量子机器在三个量子领域研究的第一个量子结构元启发法。使用 13 个真实实例将蜂窝网络中的用户移动性管理作为验证问题。使用 9 个比较指标对 6 种不同的算法进行了比较。还进行了彻底的统计测试和参数敏感性分析。实验可以回答几个问题,包括量子硬件如何影响所研究算法的搜索过程。它们还为量子元启发式设计开辟了新的视角。© 2021 作者。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
1 印度理工学院德里分校,新德里,印度 2 物理系,科学学院,Chouaib Doukkali 大学,El Jadida,摩洛哥 3 印度教育学院管理科学学院,加尔各答 700097,西孟加拉邦,印度 4 布巴内斯瓦尔国际信息技术学院,Gothapatna,布巴内斯瓦尔 751003,奥里萨邦,印度 5 贾坎德邦中央大学,Brambe,兰契,印度 6 Bikash's Quantum (OPC) Private Limited,Balindi,Mohanpur 741246,西孟加拉邦,印度 7 物理科学系,印度科学教育与研究学院加尔各答,Mohanpur 741246,西孟加拉邦,印度 8 物理科学系,印度科学教育与研究学院加尔各答,Mohanpur 741246,西孟加拉邦,印度 9 计算机科学与工程系,Maulana阿布尔卡拉姆阿扎德科技大学,加尔各答 700064,印度