重新排列,副本编号变体和序列变化(Newman,1985)。在2%的冠心病病例中,可以鉴定出非遗传原因,而20% - 30%的冠心病病例可以追溯到遗传原因(Cowan and Ware,2015年)。Qiao等。 报道说,VSD是一种与遗传原因最常相关的CHD,而36.8%的VSD与遗传因素有关(Qiao等,2021)。 尽管大多数VSD都是可修复的,并且患者可以在优化的手术和医疗条件下实现良好的长期预后,但对于某些患有患有相关遗传异常的VSD的患者,预后不令人满意(van Nisselrooij et al。,2020; Mone等,2021)。 因此,遗传异常的产前定义在VSD的诊断中非常重要,因为它可以提供更准确,更适当的遗传咨询,这可能会影响父母在持续/终止怀孕,产前监测和围产期护理方面的决策。 胎儿结构异常是侵入性产前基因检测的指标(Fu等,2022)。 具有结构异常的胎儿具有较高的非整倍性,染色体重排和序列变化的发生率(Fu等,2018)。 常规的核型分析是一种鉴定染色体重排的有效技术,诊断率在5.4%至15.5%之间(Hanna等,1996; Beke等,2005)。 但是,G带核型分析的分辨率很低,并且耗时且艰辛。 CMA具有很高的分辨率,并且时间很短。Qiao等。报道说,VSD是一种与遗传原因最常相关的CHD,而36.8%的VSD与遗传因素有关(Qiao等,2021)。尽管大多数VSD都是可修复的,并且患者可以在优化的手术和医疗条件下实现良好的长期预后,但对于某些患有患有相关遗传异常的VSD的患者,预后不令人满意(van Nisselrooij et al。,2020; Mone等,2021)。因此,遗传异常的产前定义在VSD的诊断中非常重要,因为它可以提供更准确,更适当的遗传咨询,这可能会影响父母在持续/终止怀孕,产前监测和围产期护理方面的决策。胎儿结构异常是侵入性产前基因检测的指标(Fu等,2022)。具有结构异常的胎儿具有较高的非整倍性,染色体重排和序列变化的发生率(Fu等,2018)。常规的核型分析是一种鉴定染色体重排的有效技术,诊断率在5.4%至15.5%之间(Hanna等,1996; Beke等,2005)。但是,G带核型分析的分辨率很低,并且耗时且艰辛。CMA具有很高的分辨率,并且时间很短。在基于阵列的分子细胞遗传学技术(例如CMA)发展后,小基因组缺失和重复的检测率增加了10%,无法通过标准结构畸形胎儿核型分析来检测(Hillman等,2013; Liao等,2014; Liao等,2014)。在患有产后和产前CHD的患者中,它可以识别非整倍性,染色体重排和拷贝数变化(CNV)。在7% - 36%的冠心病患者中检测到致病性CNV(Fu等,2018; Wang等,2018)。对于大多数结构异常的胎儿,在基因检测之前尚不清楚异常的根本原因。作为下一代测序(NGS)的显着进步,外显子组测序(ES)是评估产后患者的有效工具。这种检测技术用于产前诊断(Best等,2018)。In addition to improving diagnostic rates, using ES for assessing a large sample size can analyze single nucleotide variations (SNVs)/ insertions and deletions (indels) in the gene coding regions and help in the identi fi cation of novel pathogenic genes or novel variants in well-known genes in VSD patients ( Sifrim et al., 2016 ; Jin et al., 2017 ; Fu et al., 2018; Lord et al。,2019年;三项广泛的研究表明,ES可以为异常超声发现,正常核型和阴性CMA结果提供诊断率提高8.5% - 11.6%(Lord等,2019; Petrovski et al。,2019; Fu等,202222)。最近对产前CHD的研究表明,ES的诊断率为20%(6/30)(Westphal等,2019)。In the present research, we used CMA and ES to assess the detection ef fi ciency of fetuses with VSD at the chromosomal (aneuploidy), sub-chromosomal (microdeletion/ microduplication), and single gene (point variants) levels and evaluated perinatal prognosis to facilitate more accurate genetic counseling in clinical practice.
各种模块的安装指南,包括 1762-IA8、1762-IQ8、1762-IQ8OW6、1762-IQ16、1762-IQ32T、1762-OA8 和 1762-OB8。MicroLogix 1762-IF2OF2 模拟输入/输出模块目录也很详细,包括用户信息、危险场所批准和规格。由于固态设备的操作与机电设备不同,因此强调了固态设备安装的安全指南,敦促用户验证每个应用程序的可接受性。罗克韦尔自动化对因设备使用而造成的间接或后果性损害不承担责任。该手册强调了遵守安全协议的重要性,并指出了固态设备安装和传统设备安装之间的主要区别。本设备设计用于污染等级 2 的工业环境,过压类别 II 应用,最高海拔 2000 米 (6562 英尺) 不会降额。根据 IEC/CISPR 11,它被归类为第 1 组 A 类工业设备。如果不采取适当的预防措施,由于传导和辐射干扰,住宅和其他环境中可能会出现电磁兼容性问题。这种开放式设备必须安装在符合特定环境条件的外壳内,并防止人身伤害因接触带电部件而受到伤害。外壳还必须具有阻燃性能,符合 5VA、V2、V1 或 V0(或同等标准)的火焰蔓延等级。外壳内部只能使用工具才能接触到。除了本出版物之外,您还可以参阅 Allen-Bradley 的《工业自动化接线和接地指南》(出版物 1770-4.1)了解更多安装要求。此外,请查阅 NEMA 标准 250 和 IEC 60529,了解不同外壳类型提供的防护等级。该设备对静电放电敏感,静电放电可能会导致内部损坏并影响正常运行。要安全地操作本设备: * 触摸接地物体以释放静电 * 佩戴经批准的接地腕带 * 避免触摸元件板上的连接器或插针 * 不要触摸设备内的电路元件 * 使用防静电工作站(如果可用) * 不使用时,将设备存放在适当的防静电包装中 以下模块已获得北美危险场所批准:1762- IF2OF2。 在危险场所操作本设备时: * 标有“CL I、DIV 2、GP A、B、C、D”的产品仅适用于 I 类 2 区 A、B、C 和 D 组危险场所和非危险场所 * 每个产品的额定铭牌上都有标记,指示危险场所温度代码 * 在系统中组合产品时,可以使用最不利的温度代码(最低“T”数字)来确定系统的整体温度代码 请记住:* 除非电源已切断或确认该区域无危险,否则不要断开设备 * 不要断开连接 使用此设备时,请断开电源或确认该区域无危险,以确保该区域安全。使用螺钉、闩锁、螺纹连接器或其他提供的方式固定外部连接,以防止损坏或触电。请注意,更换组件可能会导致其不适合用于 I 类、2 区环境。此外,只能在非危险区域更换电池。所有接线必须符合国家电气规范 (NEC) 第 501-4(b) 条的规定,并且只能使用工具进入外壳内部,以防止内部组件被篡改或损坏。对于可能暴露于化学品的设备,例如继电器和环氧密封设备,建议定期检查它们是否有任何性能下降。这包括继电器模块等模块,暴露于某些化学品可能会降低这些设备中使用的密封材料的性能。有关此类设备在危险环境中使用的信息:标有“CL I, DIV 2, GP A, B, C, D”的设备仅设计用于 I 类 2 区 A、B、C、D 组环境,包括危险和非危险环境。每款产品的标识牌上都带有温度代码标记,指示危险区域分类。当多个产品组合成一个系统时,可以使用最关键(最低)的温度代码来确定整个系统的温度等级。当地有资格进行安装的机构必须在安装时检查设备组合。爆炸风险在断开设备或其连接器之前,请确保电源已切断或环境被归类为非危险环境。使用螺钉、滑动闩锁、螺纹连接器或本产品随附的其他方式固定所有外部连接器。更换组件可能会导致本设备不适合在 I 类 2 区环境中使用。此外,只能在非危险区域更换电池。对于适用的模块,暴露于化学品可能会降低所用材料的密封性能。建议定期检查此类设备。注意:文本与之前完全相同,但略作调整以便于理解,且未删除任何翻译和注释。有关安装和使用 MicroLogix 可编程控制器(包括扩展 I/O 系统)的更多详细信息。这包括 MicroLogix 1100、1200 和 1400 型号的说明。此外,还提供了正确接线和接地技术的指南。如果您需要手册,可以从 Rockwell Automation 网站下载免费电子版,或通过 Allen-Bradley 分销商或 Rockwell Automation 代表购买印刷版。MicroLogix 1762-IF2OF2 模拟输入/输出模块不包括安装支脚或 DIN 导轨闩锁。模块的尺寸为 90 毫米(3.5 英寸)宽、87 毫米(3.43 英寸)深和 40.4 毫米(1.59 英寸)高。对于大多数应用,控制器应安装在工业外壳中,以减少电气干扰和环境暴露。建议将控制器远离电源线、负载线和其他电气噪声源。正确的接地指南可在出版物 1770-4.1 中找到。模块可以安装在接地良好的安装表面上,例如金属面板,除非安装表面无法接地,否则无需额外的接地连接。有关更多信息,请参阅《工业自动化接线和接地指南》,Allen-Bradley 出版物 1770-4.1。模块应与外壳壁、线槽和相邻设备等物体保持距离。四周留出 50.8 毫米(2 英寸)的空间,以确保通风良好。可以使用 DIN 导轨(例如 EN 50 022 - 35 x 7.5 或 EN 50 022 - 35 x 15)安装模块,安装模块前需要关闭 DIN 导轨闩锁。在振动或冲击环境中,请使用 DIN 导轨端锚(Allen-Bradley 部件编号 1492-EA35 或 1492-EAH35)。该模块的规格包括:*输入规格:通用电气环境输入,深度 87 毫米,高度 90 毫米*输出规格:点输出 2、0-10V、4-20mA*通用规格:构造机械通用,1762-IF2OF2 类可编程逻辑控制器模块的有效输入/输出数据字格式/范围电流范围 4-20mA深度无高度无*I/O 隔离:隔离 I/O 端口 4 通道模拟组合模块 I/O 状态指示 LED 模块接口模拟组合通道数 4 点输出 2*温度额定值:-20…65°C (-4…149°F)*模拟输入分辨率:12 位输入电流真输入电压真输入电阻假输入热电偶假*输出,电流真输出电压真输出信号可配置真*电气连接类型:螺钉连接快速瞬变脉冲群 IEC1000-4-4:2kV @ 5kHz 传导抗扰度 IEC 1000-4-6:10V @ 0.15…80MHz 辐射抗扰度 IEC1000-4-3:10 V/m,80…1,000 MHz,80% 该设备具有 +900 MHz 键控载波,适用于符合 IEC1000-4-5 浪涌抗扰度的安全功能。它的工作温度范围为 -20 °C,可承受高达 EN 61000-4-2 标准的 ESD 抗扰度。主要规格包括:登录您的 Rockwell Automation 帐户以查看知识库文章。登录寻找更多技术说明?在我们的知识库中查找 Rockwell Automation 技术专家对此产品的问题和解答。搜索知识库 雪佛龙右键 常规 电气 环境 输入规格 输出规格 常规规格 构造 机械 通用规格 1762-IF2OF2 类可编程逻辑控制器模块的有效输入/输出数据字格式/范围 电流范围 4-20 深度 87 无 高度 90 无 I/O 隔离 隔离式 I/O 端口 4 通道模拟组合模块 I/O 状态指示 LED 模块接口 模拟组合 通道数 4 点 输出 2 点,0-10V,4-20 mA 温度额定值 -20…65 °C (-4…149 °F) 模拟输入分辨率 12 位 输入,电流 True 输入,电压 True 输入,电阻 False 输入,电阻温度计 False 输入,热电偶 False 输入信号,可配置 True 输出,电流 True 输出,电压 True 输出信号可配置 True 模拟输入可配置 True 模拟输出可配置 True 电气连接类型 螺钉连接 快速瞬态脉冲IEC1000-4-4: 2kV @ 5kHz 传导抗扰度 IEC 1000-4-6: 10V @ 0.15...80MHz 辐射抗扰度 IEC1000-4-3: 10 V/m, 80...1,000 MHz, 80% 高度调制, +900 MHz 键控载波 适用于安全功能 假浪涌抗扰度 IEC1000-4-5: 1kV 电镀枪 模块电源 LED 亮起:表示已通电 工作温度 -20 °C ESD 抗扰度 EN 61000-4-2, 4 kV 接触,推荐的电缆类型为 Belden 8761(屏蔽),如热电偶制造商的说明所述(对于 1762-IT4,屏蔽延长线适用于所用的特定热电偶)。该产品带包装重约 240 克(0.53 磅),可承受高达 5g @ 10...500 Hz 的振动,峰间位移为 0.030 英寸。它还满足高达 30g 的冲击操作要求,适用于 I 类、2 区 A、B、C、D 组危险环境(符合 UL 1604 和 CSA C22.2 No. 213)。该产品的电气规格包括 0...10V DC 时的最大原始/比例数据计数为 32,760 或 4...20 mA 时为 32,760,PID 缩放值范围为 16,380 至 3120,具体取决于输入范围。它是可修复的(注意 NOT_REPAIRABLE 状态),并且首选可用性为 false,并且也不提供快速周转。产品尺寸为 11.1 x 5.309 x 16.688 厘米,重量为 0.206 千克。UL 列表证明自 2025 年 1 月 21 日起符合危险场所要求;请验证产品标签上针对您特定产品的认证。1762 if2of2 用户手册。1762-if4 用户手册。1762-if4 手册。1762-if20f2 手册。1762 if2of2 手册 pdf。4-20 mA 温度额定值 -20…65 °C (-4…149 °F) 模拟输入分辨率 12 位 输入,电流 True 输入,电压 True 输入,电阻 False 输入,电阻温度计 False 输入,热电偶 False 输入信号,可配置 True 输出,电流 True 输出,电压 True 输出信号可配置 True 模拟输入可配置 True 模拟输出可配置 True 电气连接类型 螺钉连接 快速瞬变脉冲群 IEC1000-4-4: 2kV @ 5kHz 传导抗扰度 IEC 1000-4-6: 10V @ 0.15...80MHz 辐射抗扰度 IEC1000-4-3: 10 V/m, 80...1,000 MHz, 80% 高度调制, +900 MHz 键控载波 适用于安全功能 False 浪涌抗扰度 IEC1000-4-5: 1kV 电镀枪 模块电源 LED 亮起:表示已通电工作温度 -20 °C ESD 抗扰度 EN 61000-4-2,4 kV 接触,推荐电缆类型为 Belden 8761(屏蔽),如热电偶制造商的说明中所述(对于 1762-IT4,屏蔽延长线适用于所使用的特定热电偶)。产品带包装重约 240 克(0.53 磅),可承受高达 5g @ 10...500 Hz 的振动,峰间位移为 0.030 英寸。它还满足高达 30g 的冲击操作要求,适用于分类为 I 类、2 区 A、B、C、D 组的危险环境(符合 UL 1604 和 CSA C22.2 No. 213)。该产品的电气规格包括最大原始/比例数据计数 32,760 @ 0...10V DC 或 32,760 @ 4...20 mA,以及根据输入范围从 16,380 到 3120 的 PID 缩放值。它是可修复的(注意 NOT_REPAIRABLE 状态),并且首选可用性为 false,并且也不提供快速周转。产品尺寸为 11.1 x 5.309 x 16.688 厘米,重量为 0.206 千克。UL 列表证明符合 2025 年 1 月 21 日的危险场所要求;请验证您的特定产品的产品标签上的认证。1762 if2of2 用户手册。1762-if4 用户手册。1762-if4 手册。1762-if20f2 手册。 1762 if2of2 手册 pdf。4-20 mA 温度额定值 -20…65 °C (-4…149 °F) 模拟输入分辨率 12 位 输入,电流 True 输入,电压 True 输入,电阻 False 输入,电阻温度计 False 输入,热电偶 False 输入信号,可配置 True 输出,电流 True 输出,电压 True 输出信号可配置 True 模拟输入可配置 True 模拟输出可配置 True 电气连接类型 螺钉连接 快速瞬变脉冲群 IEC1000-4-4: 2kV @ 5kHz 传导抗扰度 IEC 1000-4-6: 10V @ 0.15...80MHz 辐射抗扰度 IEC1000-4-3: 10 V/m, 80...1,000 MHz, 80% 高度调制, +900 MHz 键控载波 适用于安全功能 False 浪涌抗扰度 IEC1000-4-5: 1kV 电镀枪 模块电源 LED 亮起:表示已通电工作温度 -20 °C ESD 抗扰度 EN 61000-4-2,4 kV 接触,推荐电缆类型为 Belden 8761(屏蔽),如热电偶制造商的说明中所述(对于 1762-IT4,屏蔽延长线适用于所使用的特定热电偶)。产品带包装重约 240 克(0.53 磅),可承受高达 5g @ 10...500 Hz 的振动,峰间位移为 0.030 英寸。它还满足高达 30g 的冲击操作要求,适用于分类为 I 类、2 区 A、B、C、D 组的危险环境(符合 UL 1604 和 CSA C22.2 No. 213)。该产品的电气规格包括最大原始/比例数据计数 32,760 @ 0...10V DC 或 32,760 @ 4...20 mA,以及根据输入范围从 16,380 到 3120 的 PID 缩放值。它是可修复的(注意 NOT_REPAIRABLE 状态),并且首选可用性为 false,并且也不提供快速周转。产品尺寸为 11.1 x 5.309 x 16.688 厘米,重量为 0.206 千克。UL 列表证明符合 2025 年 1 月 21 日的危险场所要求;请验证您的特定产品的产品标签上的认证。1762 if2of2 用户手册。1762-if4 用户手册。1762-if4 手册。1762-if20f2 手册。 1762 if2of2 手册 pdf。按照热电偶制造商的说明进行操作(对于 1762-IT4,屏蔽延长线适用于所使用的特定热电偶)。产品重量约为 240 克(0.53 磅),包括包装,可承受高达 5g @ 10...500 Hz 的振动,峰间位移为 0.030 英寸。它还满足高达 30g 的冲击操作要求,适用于 I 类、2 区 A、B、C、D 组危险环境(符合 UL 1604 和 CSA C22.2 No. 213)。该产品的电气规格包括 0...10V DC 时的最大原始/比例数据计数为 32,760 或 4...20 mA 时为 32,760,PID 缩放值范围从 16,380 到 3120,具体取决于输入范围。它是可修复的(注意 NOT_REPAIRABLE 状态),并且首选可用性为 false,并且快速周转也不可用。产品尺寸为 11.1 x 5.309 x 16.688 厘米,重量为 0.206 千克。截至 2025 年 1 月 21 日,UL 列表证明符合危险场所要求;请验证您的特定产品的产品标签上的认证。1762 if2of2 用户手册。1762-if4 用户手册。手册 1762-if4。1762-if20f2 手册。1762 if2of2 手册 pdf。按照热电偶制造商的说明进行操作(对于 1762-IT4,屏蔽延长线适用于所使用的特定热电偶)。产品重量约为 240 克(0.53 磅),包括包装,可承受高达 5g @ 10...500 Hz 的振动,峰间位移为 0.030 英寸。它还满足高达 30g 的冲击操作要求,适用于 I 类、2 区 A、B、C、D 组危险环境(符合 UL 1604 和 CSA C22.2 No. 213)。该产品的电气规格包括 0...10V DC 时的最大原始/比例数据计数为 32,760 或 4...20 mA 时为 32,760,PID 缩放值范围从 16,380 到 3120,具体取决于输入范围。它是可修复的(注意 NOT_REPAIRABLE 状态),并且首选可用性为 false,并且快速周转也不可用。产品尺寸为 11.1 x 5.309 x 16.688 厘米,重量为 0.206 千克。截至 2025 年 1 月 21 日,UL 列表证明符合危险场所要求;请验证您的特定产品的产品标签上的认证。1762 if2of2 用户手册。1762-if4 用户手册。手册 1762-if4。1762-if20f2 手册。1762 if2of2 手册 pdf。
本章探讨了自动驾驶研究的当前状态,这是在自动出租车要求的背景下设定的。根据开发团队的科学出版物和自我报告提供了全面的概述,研究了环境感知,自我感知,任务成就,本地化,合作,地图使用和功能安全等方面。虽然某些方法在很大程度上依赖于GPS和MAP数据等卫星系统,但很少关注环境感知和场景的理解。尽管近年来对自动驾驶的令人印象深刻的证明,但许多挑战仍未解决,尤其是在自动驾驶公共道路时。本书可深入了解高级驾驶员辅助系统(ADA)和自动驾驶的基本原理,技术细节和应用,涵盖了ADAS系统设计,高级材料,人工智能和可靠性问题等领域。以学术和行业专家的贡献为特色,该全面参考将读者彻底了解ADA的各个方面,突出了未来的研究和发展的关键领域。作者Yan Li博士是Intel Corporation的高级职员工程师,在微电总包装相关的技术解决方案以及质量和可靠性问题方面拥有丰富的经验。在此处给出的文章文本:Li博士参与了矿物质金属和材料协会(TMS),美国金属学会(ASM)和电子设备故障分析协会(EDFAS)等专业协会。此选择可能会对道路事故产生重大影响。她自2011年以来一直是TMS年度会议的组织者,也是综合电路国际物理与失败分析技术委员会成员(IPFA)。Li博士在微电子包装中发表了20多篇论文和两份专利,并共同编辑了一本关于3D微电子包装的书。Shi博士是Lyft 5级自动驾驶部门的主要硬件可靠性工程师。他在加入Lyft之前已经在半导体和消费电子产品上工作了15多年。Shi博士担任过各种职务,包括集成工程师,高级可靠性工程师,员工质量和可靠性工程师以及过程工程师。他获得了博士学位。德克萨斯大学奥斯汀分校的物理学博士学位和中国科学技术大学物理学学士学位。先进的驾驶员辅助系统(ADA)和自动驾驶汽车(AV)的潜在影响很大。通过减少危险的驾驶行为,交通拥堵,碳排放和成本,同时改善道路安全性和独立性,ADAS和AV具有重塑运输的潜力。但是,有许多挑战,包括新技术,非自动级零件的必要性以及现有自动级组件的新任务配置文件。给定的文本似乎讨论了影响运输,环境和安全的人类活动的各个方面。要点包括:日常生活涉及休息,社会联系或工作等个人需求之间的决策。至关重要的方面是随着自动化水平的增加而需要复杂的技术。温室气体,许多国家有计划在2050年到2050年达到零零排放的计划对美国温室气体排放的贡献最大自2020年成立以来,交通拥堵,碳排放和改善道路安全Lyft的自动驾驶部门已取得了显着的里程碑。 拥有超过100,000辆带薪骑手旅行,该平台现在是美国最大的公共自动驾驶商业平台之一[32],Lyft也已开发了四代内部员工测试的自动驾驶车辆平台(图5)。 图像展示了由Lyft的5级部门设计的两辆自动驾驶汽车,该车建立在福特Fusion和FCA Pacifica模型之上。 尽管驾驶员辅助系统和自动驾驶功能取得了进步,但许多挑战仍然存在。 由SAE J3016 [33]定义的六级驾驶自动化框架突出了所涉及的复杂性(表1)。 随着自动化水平的上升,对高级技术(例如感知,计划和控制子系统)的要求也会增加。 感知子系统依赖于传感器来检测车辆外部的对象并将其定位在环境中。 典型的传感器包括相机,GPS,IMU,LIDAR,雷达等。 由于其优点和缺点,各种传感器的组合并不罕见。 [35]。温室气体,许多国家有计划在2050年到2050年达到零零排放的计划对美国温室气体排放的贡献最大自2020年成立以来,交通拥堵,碳排放和改善道路安全Lyft的自动驾驶部门已取得了显着的里程碑。拥有超过100,000辆带薪骑手旅行,该平台现在是美国最大的公共自动驾驶商业平台之一[32],Lyft也已开发了四代内部员工测试的自动驾驶车辆平台(图5)。图像展示了由Lyft的5级部门设计的两辆自动驾驶汽车,该车建立在福特Fusion和FCA Pacifica模型之上。尽管驾驶员辅助系统和自动驾驶功能取得了进步,但许多挑战仍然存在。由SAE J3016 [33]定义的六级驾驶自动化框架突出了所涉及的复杂性(表1)。随着自动化水平的上升,对高级技术(例如感知,计划和控制子系统)的要求也会增加。感知子系统依赖于传感器来检测车辆外部的对象并将其定位在环境中。典型的传感器包括相机,GPS,IMU,LIDAR,雷达等。由于其优点和缺点,各种传感器的组合并不罕见。[35]。通过利用传感器数据和机器学习算法,对象进行检测,分类和跟踪(表2)。感知子系统的信息传递给了计划子系统,该计划子系统生成了具有特定目标位置和速度的投影路点。控制子系统然后根据此数据发送加速,制动或转向消息。这些自治子系统需要通过CPU和GPU实现的强大计算功能。各种架构在市场上共存,包括集中和分布式方法。热管理对于高级驾驶员辅助系统和由于涉及巨大的计算活动而具有自动驾驶功能至关重要。已经引入了液体冷却子系统,其中包含定制设计的冷板,并带有新的悬挂材料和过程(图6)。几家公司遇到了与热管理相关的类似技术挑战,例如冷板设计和热接口材料选择。冷板的屈曲或变形会对热性能产生负面影响,可能导致电短裤和火灾危害。系统中的制造过程或颗粒中的过多残留物会堵塞散热器并阻碍冷却液流动。实际道路上的拐角处对自动驾驶汽车构成挑战。为了减轻这些问题,公司正在广泛测试其系统,从而收集感知数据以离线训练机器学习模型。但是,此过程受到空气界面上数据传输速度的限制所阻碍。J. of CAV,2020年。J. of CAV,2020年。因此,许多组织在道路测试期间使用固态驱动器(SSD)来存储感知数据。由于SSD插入和去除的频率高,金属表面可能会磨损,从而冒着数据丢失的风险。在高级驾驶员辅助系统中使用非自动级组件和自主驾驶功能已节省了市场的时间,但引入了设计挑战。像DRAM内存之类的组件已被为这些应用所要求,但是它们在振动测试中通常会失败,从而导致系统故障。制造缺陷或材料选择不足也可能导致组件故障。在固定层损坏底盘和金属夹子在机箱上造成的隔热层损坏后,现成的单元(OT)单元失败。Shi等人的研究。[35]强调了将多个GPU并行结合到增强计算能力的潜在优势。这可以通过使用歧管整合单个水块来实现,从而简化冷却液环设计。典型的现成(OT)水块/EPDM垫圈/歧管系统由位于水块上的歧管组成,其中两个组件之间的EPDM垫圈夹在两个组件之间。拧紧后,螺钉会压缩EPDM垫圈,在歧管/螺钉上产生排斥力。但是,如图9a在温度周期式测试中,检测到歧管和水块之间的关节周围检测到冷却液泄漏。如图根据鱼骨图,主要假设表明,EPDM垫圈在高温下经历了压缩组和永久性塑性变形。由于其工作温度较低,因此这种现象对消费电子产品并不是一个关注。本研究中讨论的故障模式对自动驾驶汽车的组件和系统资格具有影响。与传统汽车平均每天驾驶不到一小时的驾驶不同,诸如机器人税之类的自动驾驶汽车的日常运营时间将大大更长。10a,这种增加的运营时间减少了达到10,000个小时数的年数。假设车速为每小时35英里(MPH),图。10b表明,随着日常运营时间的增加,自动驾驶汽车将在更少的时间内达到100,000英里。例如,如果一个机器人每天驾驶11个小时,则达到这一里程碑大约需要0.7年。此分析表明,从“数年”的角度来看,自动驾驶汽车的寿命可能比传统汽车的寿命短。这个结论与福特先前的说法保持一致,该声明预测车辆每四年将耗尽和压碎。将在以下各章中更详细地探讨基于任务配置文件的测试计划。作者旨在解决与高级驾驶员辅助系统和自动驾驶功能有关的硬件子系统设计,制造,测试和可靠性分析的出版物的有限可用性。AI和自动驾驶汽车的章节摘要:该系列审查了高级驾驶员辅助系统(ADAS)和自动驾驶汽车的应用。章节还涵盖了安全标准,方法论,挑战(边缘案例,重型尾部分配),公开可用的培训数据集,开源模拟器和验证过程。高级驾驶员辅助系统(ADA)依赖于各种技术,例如LIDAR,雷达,电化学功率系统和车载显示技术,以进行安全导航。对这些技术进行了审查,以分析其能力,挑战和应用。第1章探讨了LIDAR传感器的最新技术,涵盖了关键指标,例如检测范围,视野和眼部安全。讨论了各种激光雷达映射方法,包括机械旋转扫描仪和频率调节连续波(FMCW)LIDARS。第2章回顾了雷达技术,研究其体系结构,类别(单位,bistatic和多键雷达),波形设计以及FMCW雷达的链接预算分析。简化的示例用于说明主题。第3章侧重于ADAS车辆的电化学电源系统,讨论电池类型,化学,结构和过程。还提供了电池管理系统和故障模式分析,以及用于电池测试的行业标准的比较。第4章回顾了各种车载显示技术(LCD,TFT LCD,OLED,LED)及其架构。诸如光学性能,外观,集成和可靠性之类的要求,以及规范,功能,质量和验证等挑战。第5章探讨了数据中心使用的硬盘驱动器的当前状态和挑战。组件和材料,包括各种解决方案,以实现较高的面积数据密度,例如微波炉辅助磁记录和热辅助磁记录。工程师角色涵盖了产品生命周期的硬件可靠性的各个方面。它需要风险评估方法,例如FMEA,断层树分析和应力强度测试,加速且高度加速的生活测试技术以及用于数据分析的统计方法。此外,工程师需要执行故障分析并实施纠正措施,计算系统可靠性指标并评估可修复的系统。使用特定的硬件组件(例如相机,冷板和水块)有助于说明这些概念。章节“高级驱动器 - 辅助系统中的故障分析”深入了电子设备的分析流,讨论了各种电气测试技术,体格检查方法和材料表征程序。它涵盖了几种成像技术,包括I-V曲线跟踪和基于X射线的光谱法。本书还回顾了影响半导体套件的腐蚀机制,尤其是专注于铜和金球键。其他值得注意的来源包括B. Schlager等。此外,还简要概述了先进的驾驶员辅助系统和自动驾驶功能,以及对其他章节内容的审查。自动驾驶汽车对温室气体排放的影响,通过分析包括学术期刊和行业报告在内的各种来源进行了对自动驾驶汽车技术的最新进步的回顾。研究研究了2016年至2021年之间在Google Scholar上发表的论文,重点介绍了高级驾驶员辅助系统(ADAS),自动驾驶和硬件可靠性等主题。该评论强调了几项关键研究,其中包括N. Brese的一项研究,该研究在2019年在IEEE ECTC上提前了汽车电子技术。S. Sun等人进行了另一项值得注意的研究,他研究了MIMO雷达在2020年7月发表的IEEE Signal Processing Magazine文章中对ADA和自动驾驶的优势和挑战。该评论还涉及行业报告,例如2020年12月15日的Lyft新闻稿,该新闻稿宣布了其网络上的下一阶段的自动驾驶汽车。此外,从2020年2月11日起的LYFT报告讨论了经过Aptiv Technology提供100,000次自动驾驶骑行后吸取的经验教训。该研究提到了包括SAE J3016在内的几种标准和准则,该标准和指南提供了分类法和与驾驶汽车驾驶自动化系统有关的术语的定义。的最新传感器模型用于ADA/自动驾驶功能的虚拟测试,发表在SAE INT中。审查还检查了H. Shi等人的论文中讨论的Robo Taxis中的硬件可靠性。在2021年6月至7月的IEEE第71届电子组件和技术会议(ECTC)。另一个相关研究是由F. Chen进行的,他探索了自动驾驶汽车模块/组件的机器人税环境压力和故障模式的硬件可靠性资格。作者承认了几个人的贡献,包括Cruise的Fen Chen,他们分享了他的实验数据,以及提供语法检查的Angel Shi和Charlotte Shi。